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1. Introduction

This chapter presents some recent developments in retail promotions. In many retail settings such as

supermarkets, promotions are a key driver for boosting profits. Promotions are often used on a daily

basis in most retail environments including supermarkets, drugstores, fashion retailers, electronics

stores, online retailers, convenience stores etc. For example, a typical supermarket sells several

thousands of products, and needs to decide the price promotions for all the products at each time

period. These decisions are of primary importance, as using the right promotions can significantly

enhance the business’ bottom line. In today’s economy, retailers offer hundreds or even thousands of

promotions simultaneously. Promotions aim to increase sales and traffic, enhance awareness when

introducing new items, clear leftover inventory, bolster customer loyalty, and improve the retailer

competitiveness. In addition, price promotions are often used as a tool for price discrimination

among the different customers.

Surprisingly, many retailers still employ a manual process based on intuition and past experience

in order to decide promotions. The unprecedented volume of data that is now available to retailers

presents an opportunity to develop support decision tools that can help retailers improve promotion

decisions. The promotion planning process typically involves a large number of decision variables,

and needs to ensure that the relevant business constraints (called promotion business rules) are

satisfied (more details can be found in Section 3.2). In this chapter, we discuss how analytics

can help retailers decide the promotions for multiple items while accounting for many important

modeling aspects observed in retail data. In particular, we consider practical models that are

motivated from a collaboration between academia and industry. Most of the material discussed in

this chapter is inspired by the results in Cohen et al. (2017) and in Cohen et al. (2018). For more

details on the specifics of the algorithms, the proofs of the analytical results, and on the managerial

insights, we refer the reader to the papers.
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Several recent advances in operations management and marketing have focused on develop-

ing new methods to improve the process of deciding retail promotions. The ultimate goal is to

increase the total profit by promoting the right items at the right time periods using the right price

points. At a high level, retail promotions can be categorized as follows: (i) manufacturer versus

retailer promotions, (ii) markdowns versus temporary price discounts, (iii) targeted versus mass

campaigns, and (iv) price reductions versus alternative promotion vehicles. We next discuss these

four categorizations.

Manufacturer versus retailer promotions: In retail settings, the brand manufacturer (e.g.,

Coca-Cola, Kellogg’s) can directly offer a price discount either to the retailer or to the end-

consumer. These incentives are often called trade funds, vendor funds or manufacturer coupons.

This type of promotions usually come from long-term negotiations between the manufacturer and

the retailer, and involve several contractual terms. For example, a manufacturer can offer a rebate

to the retailer if the cumulative sales during the quarter exceed a certain target level. In exchange,

the retailer will place the manufacturer’s products in preferred locations (e.g., end-cap-displays). A

second example is a shared promotion contract in which the manufacturer subsidizes some portion

of the price discount offered to the consumers. A third example occurs when a manufacturer offers a

coupon to the end-consumers who then need to claim the discount (at the store, on the Internet or

toward future purchases). Typically, retailers have to decide when to accept such vendor funds and

under what conditions. In many situations, manufacturers tend to be aggressive on the contractual

terms by imposing long-term commitments, high volumes, and sometimes exclusivity restrictions

(e.g., not allowing the promotions of competing brands).

Markdowns versus temporary price discounts: Markdowns typically refer to the practice

of decreasing the price of an item at the end of the selling season. The regular price is decreased

in order to clear the remaining inventory. Note that in such a case, the price may be reduced

several times but cannot be increased back to the regular price. This is common practice in the

fashion and tourism industries as well as in the business of selling tickets for media events (e.g.,

concerts). For example, an apparel from the summer collection may be discounted toward the end

of the season if the remaining inventory is higher than anticipated. On the other hand, temporary

price discounts are used in different contexts. A well-known such context is of the Fast-Moving

Consumer Goods (FMCG). Examples of FMCG include processed foods and soft drinks, as well as

household products (e.g., laundry detergent and toothpaste). Note that these products are usually

non-perishable, and have a long shelf life. Such purchases are recurring, and retailers do not need to

clear the remaining inventory. In order to increase the profit, it became common for most retailers

to use temporary price reductions (e.g., 20% off the regular price during one week).
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Targeted versus mass campaigns: Retailers can either decide to send promotions to a few

targeted customers or to simply decrease the price of a particular product for all the potential buy-

ers. Targeted marketing campaigns can be implemented via email redeemable coupons or by using

advanced geo-localization techniques. Online retailers often use targeted promotions by tracking

potential customers using cookies, and by sending promotional offers to selected sets of customers

(e.g., active members that made a recent purchase). On the other hand, mass promotions are price

discounts that apply to all customers. Brick-and-mortar retailers such as supermarkets mainly

employ mass promotion campaigns.

Price reductions versus alternative promotion vehicles: Retailers can use different ways

to promote a product. The most straightforward method is to use a price discount, in which the

item is temporarily priced below its regular price. Other options include “buy-one-get-one”, in-

store flyers, coupons, tasting stands, placing products at the end of an aisle (end-cap-display),

sending out flyers, broadcasting TV commercials, radio advertisements, etc. (these are often called

promotion vehicles). Typically, a retailer can choose among 5-40 different promotion vehicles at

each point in time.

In this chapter, we focus on the mass pricing promotion optimization problem faced by a retailer

who sells FMCG products. Namely, we consider a retailer (e.g., a supermarket) who needs to decide

which items to promote, at which price points, and when to schedule the promotions of the different

items. The problems of setting the right manufacturer incentives, optimizing markdowns, designing

targeted promotions, and optimizing promotion vehicles are also important retail questions, but

are beyond the scope of this chapter. We will briefly refer to some of the relevant literature on

these problems in Section 2.

The amount of money spent on promotions for FMCG products can be significant - it is estimated

that FMCG manufacturers spend about $1 trillion annually on promotions (Nielsen 2015). In

addition, promotions play an important role in the FMCG industry as a large proportion of the sales

is made during promotions. For example, retail data indicates that 12–25% of supermarket sales in

five European countries were made during promotions (Gedenk et al. 2006). The market research

group IRI found that more than half of all goods (54.6%) sold to UK shoppers in supermarkets

and major retailers were on promotion.1

The promotion planning process faced by a medium to large size retailer is challenging for several

reasons. First, one needs to carefully account for the cross-item effects in demand (cannibalization

and complementarity). When promoting a particular item, the demand of some other products

may also be affected by the promotion. Consequently, one needs to decide the promotions of all

1 https://www.theguardian.com/business/2015/nov/02/majority-of-goods-sold-in-uk-stores-on-promotion-finds-
study-multi-buys
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the items in the category while accounting for those effects that can be directly estimated from

data. Second, retail promotions are often constrained by a set of business rules specified by the

retailer and/or the product manufacturers. Example of business rules include prices chosen from

a set of discrete values, limited number of promotions (both per time period and for each item),

and cross-item business rules that restrict the relationship between the prices of the different items

(more details are provided in Section 3.2). Third, the demand usually exhibits a post-promotion-

dip effect. This effect is induced by the promotion fatigue (i.e., repeating the same promotion may

have a low marginal impact), and by the stockpiling behavior of consumers. More precisely, for

certain categories of (non-perishable) products, customers tend to stockpile during promotions by

purchasing larger quantities for future consumption. This ultimately leads to a reduced demand

following the promotion period. Fourth, the problem is difficult due to its large scale. As we

mentioned, an average supermarket offers several thousands of SKUs (Stock Keeping Units), and

the number of items on promotion at any time can be very large. Consequently, this leads to a

large number of decisions that need to be made by the retailer.

Retail promotions can have a significant impact on boosting sales, and on influencing customers.

For example, a study from the International Council of Shopping Centers shows that 90% of adult

consumers claim to be influenced by promotions in terms of the amount they spend, and the items

they purchase.2 Despite the complexity of the promotion planning process, it is still to this day

performed manually in many supermarket chains. This motivates us to design and study promotion

optimization models that can make promotion planning more efficient and automated. The goals

of this line of research include the following:

• Formulate the promotion optimization problem for multiple items (labeled as Multi-POP).

This formulation is directly motivated from practice, holds for general demand models (esti-

mated from data), and can incorporate the relevant business rules.

• Discuss how the formulation captures several important economic factors which are present in

retail environments. These factors include the post-promotion dip effect (due to the stockpiling

behavior of consumers), the cross-item effects, and the demand seasonality.

• Develop an efficient approximation solution approach to solve the problem. We propose a

discrete linearization method that allows the retailer to solve a large scale instance of the

problem within seconds. We also convey that our solution approach provides a parametric

worst-case bound on the quality of the approximation relative to the optimal (intractable)

solution.

2 https://retailleader.com/brick-and-mortar-makes-grade-back-school-shopping
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• Present a beginning-to-end application of the entire process of optimizing retail promotions.

We divide the process in five steps that the retailer needs to follow; from collecting and

aggregating the data to computing the future promotion decisions.

• Discuss the potential impact of using data analytics and optimization for retail promotions.

We convey that in our tested examples (calibrated with retail data), using the promotions

suggested by our model can yield a 2-9% profit improvement. Such an increase is significant,

as retail businesses typically operate under small margins.

This chapter is organized as follows. In Section 2, we review some of the related literature.

In Section 3, we report the notation, assumptions, and problem formulation. In Section 4, we

present a class of approximation methods to efficiently solve the promotion optimization problem.

In Section 5, we use our model and solution approach to draw practical insights on promotion

planning, and present a summary of how to apply our model to real-world retail environments.

Finally, we report our conclusions in Section 6. As mentioned before, more details on the technical

results and on the insights can be found in Cohen et al. (2017) and in Cohen et al. (2018).

2. Literature Review

The topic of retail promotions has been an active research area both in academia and industry.

In particular, our problem is related to several streams of literature, including dynamic pricing,

promotions in marketing, and retail operations.

Dynamic pricing: Dynamic pricing has been an extensive topic of research in the operations

management community. Comprehensive reviews can be found in the books and review papers by

Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003), Talluri and Van Ryzin (2006),

Özer and Phillips (2012), as well as the references therein. A large number of recent papers study the

problem of dynamic pricing under various contexts and modeling assumptions. Examples include

Ahn et al. (2007), Su (2010) and Levin et al. (2010), just to name a few. In Ahn et al. (2007), the

authors propose a demand model in which a proportion of customers strategically wait k periods,

and purchase the product once the price falls below their willingness to pay. They then formulate

a mathematical programming model, and develop solution techniques. In Su (2010), the author

studies a model with multiple consumer types who may differ in their holding costs, consumption

rates, and fixed shopping costs. The author solves the dynamic pricing model by computing the

rational expectation equilibrium, and draws several managerial insights. In Levin et al. (2010),

the authors consider a dynamic pricing model for a monopolist who sells a perishable product

to strategic consumers. They model the problem as a stochastic dynamic game, and prove the

existence of a unique subgame-perfect equilibrium pricing policy. A very prominent topic in the

dynamic pricing literature is to study the setting in which consumers are strategic (or forward-

looking) (see, e.g., Aviv and Pazgal 2008, Cachon and Swinney 2009, Levina et al. 2009, Besbes and
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Lobel 2015, Liu and Cooper 2015, Chen and Farias 2015). The problem considered in this chapter

is in the same spirit as the dynamic pricing problem. Nevertheless, we focus on a setting where

the demand model is estimated from historical data, and the optimization formulation includes

the simultaneous promotion decisions of several interconnected items. In addition, we require the

dynamic pricing decisions to satisfy several business rules.

Promotions in marketing: Sales promotions are an important area of research in marketing

(see Blattberg and Neslin (1990) and the references therein). However, the focus in the marketing

community is typically on modeling and estimating dynamic sales models (econometric or choice

models) that can be used to draw managerial insights (Cooper et al. 1999, Foekens et al. 1998).

For example, Foekens et al. (1998) study econometrics models based on scanner data to examine

the dynamic effects of sales promotions. It is widely recognized in the marketing community that

for certain products, promotions may have a pantry-loading or a post-promotion dip effect, i.e.,

consumers tend to purchase larger quantities during promotions for future consumption (stockpiling

behavior). This effect leads to a decrease in sales in the short term. In order to capture the post-

promotion dip effect, many of the dynamic sales models in the marketing literature posit that the

demand is not only a function of the current price, but also of the past prices (see, e.g., Ailawadi

et al. 2007, Macé and Neslin 2004). Finally, note that several prescriptive works in the marketing

community study the impact of retail coupons in the context of sales promotions (see, for example

Heilman et al. 2002). The demand models used in this chapter also consider that the demand

depends explicitly on the current and past prices as well as on the prices of other items.

Retail operations: Several academic papers study the topic of retail promotions from an

empirical descriptive point of view. Van Heerde et al. (2003) and Mart́ınez-Ruiz et al. (2006) use

panel-data to empirically study how retail promotions induce consumers to switch brands. The

recent work by Felgate and Fearne (2015) uses supermarket loyalty card data from a sample of over

1.4 million UK households to analyze the effect of promotions on the sales of specific products across

different shopper segments. Another line of research discusses field experiments on pricing decisions

implemented at retailers. A classical successful example is the implementation at the fashion retail

chain Zara (see Caro and Gallien 2012). In their work, the authors report the results of a controlled

field experiment conducted in all Belgian and Irish stores during the 2008 fall-winter season. They

assess that the new process has increased clearance revenues by approximately 6%. An additional

recent work can be found in Ferreira et al. (2015) in which the authors collaborated with Rue La

La, a flash sales fashion online retailer. The authors propose a non-parametric prediction model to

predict future demand of new products, and develop an efficient solution for the price optimization

problem. They estimate a revenue increase for the test group by approximately 9.7%. Pekgün et al.

(2013) describe a collaboration with the Carlson Rezidor Hotel Group. In this study, the authors
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show that demand forecasting and dynamic revenue optimization consistently increased revenue

by 2-4% in participating hotels relative to non-participating hotels.

Other types of promotions: As mentioned before, retail promotions can be divided in several

categories. While the models presented in this chapter focus on the mass pricing promotion opti-

mization problem faced by a retailer who sells FMCG products, other studies have considered the

alternative promotion types. Several papers consider the problem of vendor funds in the context of

promotion planning (see, e.g., Silva-Risso et al. 1999, Nijs et al. 2010, Yuan et al. 2013, Baardman

et al. 2017b). As mentioned before, an additional related topic is the one of markdown pricing, or

markdown optimization. In this problem, the seller needs to decide when to decrease the price of

the item(s) in order to clear the remaining inventory by the end of the season. There is a large

number of academic papers that propose different models and methods to solve the markdown

pricing problem. Examples include Yin et al. (2009), Mersereau and Zhang (2012), Zhang and

Cooper (2008), Vakhutinsky et al. (2012), and Caro and Gallien (2012), just to name a few. As

we explained before, the promotion optimization problem for FMCG products differs from the

markdown optimization problem by the structure of the pricing policy and by the lack of inventory

expiration. The topic of designing targeted promotions has recently attracted a lot of attention.

Given that sending promotions to existing or new customers can be expensive and often results

in low conversion rates, several firms aim to develop quantitative methods that exploit the large

historical data sets in order to design targeted promotion campaigns. For example, retailers often

need to decide which types of customers to target, and what are the most important features

(e.g., geo-localization, demographics, and past behavior). Targeted marketing campaigns (email

and mobile offers) have been extensively studied in the academic literature (see, e.g., Arora et al.

2008, Fong et al. 2015, Andrews et al. 2015, Jagabathula et al. 2018). Finally, in addition to price

promotions, retailers typically need to decide how to assign the different vehicles (e.g., flyers and

TV commercials). The recent work in Baardman et al. (2017a) addresses the problem of optimally

scheduling promotion vehicles for a retailer.

Methodology: From a methodological perspective, the tools used in this chapter are related

to the literature on nonlinear and integer optimization. We formulate the promotion optimization

problem as a nonlinear mixed integer program (NMIP). Due to the general classes of demand

functions we consider, the objective function is typically non-concave, and such NMIPs are gen-

erally difficult from a computational complexity standpoint. Under certain special structural con-

ditions (see, e.g., Hemmecke et al. (2010) and the references therein), there exist polynomial time

algorithms for solving NMIPs. However, many NMIPs do not satisfy these conditions and are

solved using techniques such as Branch and Bound, Outer-Approximation, Generalized Benders

and Extended Cutting Plane methods (Grossmann 2002).
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In the special instance of the Multi-POP with linear demand and continuous prices, one can

formulate our problem as a Cardinality-Constrained Quadratic Optimization (CCQO) problem. It

has been shown in Bienstock (1996) that such a problem is NP-hard. Thus, tailored heuristics have

been developed in order to solve this type of problems (see, for example, Bienstock 1996, Bertsimas

and Shioda 2009). The general instance of our problem has discrete variables, and considers a

general demand function. Note that our problem was also shown to be NP-hard (Cohen et al. 2016).

Our solution approach is based on approximating the objective function by exploiting the discrete

nature of the problem. Given that we consider general demand functions, it is not possible to use

linearization approaches such as in Sherali and Adams (1998). Our main approximation method

results in a formulation which is related to the field of Quadratic Programming. Such problems

were extensively studied in the literature (see, e.g., Frank and Wolfe 1956, Balinski 1970, Rhys

1970, Padberg 1989, Nocedal and Wright 2006).

3. Problem Formulation

In this section, we formulate the promotion optimization problem (labeled as Multi-POP). We

first introduce the notation and our assumptions. We then discuss the various business rules that

the retailer needs to satisfy when deciding price promotions. Finally, we present the resulting

optimization formulation.

Consider a retailer who sells several FMCG products. Very often, retailers decide the price

promotions of their products for each category separately. Consequently, we focus our presentation

on a single category (e.g., ground coffee, soft drinks) composed of N items (or SKUs). The goal of

the category manager is to maximize the total profit over a selling horizon composed of T periods

(for example, one quarter of 13 weeks). We denote by pit the price of item i at time t.3 We also

denote by cit the (exogenous) cost of a single unit of item i at time t. In other words, we assume

that the cost of each item at each time is known, and that the retailer needs to decide the prices

of all N items during all T time periods. A summary of our notation can be found at the end of

this section.

3.1. Assumptions

To gain tractability, we impose the following assumptions.

Assumption 1. 1. The retailer decides all the price promotions at the beginning of the season.

2. The retailer carries enough inventory to meet the demand for each item in each time period.4

3. The demand is expressed as a deterministic time-dependent nonlinear function of the prices.

3 Throughout this chapter, the subscript (resp. superscript) index corresponds to the time (resp. item).

4 We therefore use the words demand and sales interchangeably.
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4. The demand function depends explicitly on self past and current prices, and on cross current

prices.

We next briefly discuss the validity of the above assumptions. Assumption 1.1 applies to a setting

where the retailer needs to commit upfront for the entire selling season. For example, such restric-

tions can emerge from vendor funds or can be imposed by sending out flyers through different

advertising channels.

Note that Assumption 1.2. does not apply to all products and retail settings (e.g., very often in

the fashion industry, limited inventory is produced to induce scarcity). Unlike fashion items which

may be seasonal, FMCG products are typically available all year round. These products have a

long shelf life, and customers have been conditioned to always find these products in stock at

retail stores. Since FMCG products are usually easy to store and have a high degree of availability,

FMCG retailers typically do not stock out. In Cohen et al. (2017), the authors analyze two years

of supermarket data for FMCG products, and convey that (i) the demand forecast accuracy for

this type of products is often high (good out-of-sample R2 and MAPE), and (ii) the inventory

is not issue as very few stock-outs occurred over a two-year period. This can be justified by the

fact that supermarkets have a long experience with inventory decisions, and collected large data

sets allowing them to develop sophisticated forecasting demand tools to support ordering decisions

(see, e.g., Cooper et al. 1999, Van Donselaar et al. 2006). Finally, grocery retailers are aware of

the negative effects of being out of stock for promoted products (see, e.g., Corsten and Gruen

2004, Campo et al. 2000). However, for settings where inventory is limited, one needs to consider

a different formulation than the one presented in this chapter.

Assumption 1.3 translates to denoting the demand of item i at time t by dit(p), where p is a vector

of current and past prices (see more details below). We assume that the demand is a deterministic

function as we observed a high out-of-sample prediction accuracy using our data. Extending our

model when the demand is a stochastic function is an interesting direction for future research (e.g.,

by using learning algorithms).

Assumption 1.4 implies that the demand does not explicitly depend on cross past prices. In other

words, the demand of item i does not depend on the past prices of the other items in the category.

This assumption was validated by running demand prediction models using retail datasets (more

details can be found in Cohen et al. 2018). Consequently, the demand of item i at time t can

be any nonlinear and time dependent function of the form: dit
(
pit, p

i
t−1, . . . , p

i
t−Mi ,p

−i
t

)
, where M i

represents the memory parameter of item i (i.e., the number of past prices that affect the current

demand), and p−it denotes the vector of prices of all the items except i at time t. Note that in

practice M i is estimated from the historical data, and can be different across items.

Note that the demand of item i at time t depends on several factors:
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• The self current price pit – This captures the price sensitivity of the consumers toward the

item.

• The self past prices
(
pit−1, . . . , p

i
t−Mi

)
– This captures the post promotion dip effect (induced

by the stockpiling behavior of consumers).

• The cross current prices p−it – This captures the cross-item effects on demand (substitution

and complementarity).

• Other potential features such as demand seasonality (weekly, monthly or quarterly), trend

factor, store effect, holiday boosts, etc.

Concrete demand models such as the log-log demand function can be found in Cohen et al. (2017).

In most product categories, a promotion for a particular item affects its own sales, but also the

sales of other items in the category. As mentioned, we capture these cross-item effects by assuming

that the demand of item i depends on the prices of the other items (at the same time period). The

standard example of substitutable items are competing brands such as Coke and Pepsi. In this case,

it is clear that promoting a Coke product potentially increases Coke’s sales but it may also decrease

Pepsi’s sales. Mathematically, one can assume that if items i and j 6= i are substitutes, then ∂dit

∂p
j
t

≥ 0

and
∂d

j
t

∂pit
≥ 0 for some t. Two products i and j are complements if the consumption of i induces

customers to purchase item j (and vice versa), e.g., shampoo and conditioner. Mathematically, one

can assume that if items i and j 6= i are complements, then ∂dit

∂p
j
t

≤ 0 and
∂d

j
t

∂pit
≤ 0 for some t.

3.2. Business Rules

In the retail setting we consider, there are typically two classes of business rules: (i) business rules

on each item separately (called self business rules); and (ii) business rules that impose joint pricing

constraints on several items (called cross-item business rules). The self business rules are identical

to the ones presented in Cohen et al. (2017), while the cross-item business rules are similar to

Cohen et al. (2018).

Self business rules

1. Prices are chosen from a discrete price ladder. For each product, there is a finite set of

permissible prices. In particular, we consider that each item i= 1, . . . ,N can take several prices: the

regular price denoted by qi0, and Ki = |Qi|−1 promotion prices denoted by qik. The total number

of price points for item i is called the size of the price ladder (denoted by |Qi|).5 Consequently, the

price of item i at time t can be written as pit =
∑Ki

k=0 q
ikγikt , where the binary decision variable γikt

is equal to 1 if the price of item i at time t is selected to be qik, and 0 otherwise.

5 For simplicity, we assume that the elements of the price ladder are time independent, but our results still hold when
this assumption is relaxed. In addition, we assume without loss of generality that the regular non-promotion price
qi0 = q0 is the same across all items i = 1, . . . , n and all time periods (this assumption can be relaxed at the expense
of a more cumbersome notation).
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2. Limited number of promotions. The retailer may want to limit the promotions frequency for

a product in order to preserve the image of their store, and not train customers to be deal-seekers.

For example, it may be required to promote item i at most Li = 3 times during the quarter. This

requirement for item i is captured by the following constraint:
∑T

t=1

∑Ki

k=1 γ
ik
t ≤Li.

3. Separating periods between successive promotions (no-touch constraint). A common additional

requirement is to space out two successive promotions by a minimal number of separating peri-

ods, denoted by Si. This constraint also helps retailers preserve their store image and discourage

consumers to be deal-seekers. In addition, this type of requirement may be dictated by the manu-

facturer that sometimes restricts the frequency of promotions in order to preserve the brand image.

Such a requirement for item i translates to adding the following constraint:
∑t+Si

τ=t

∑Ki

k=1 γ
ik
τ ≤ 1 ∀t.

Cross-item business rules

1. Total limited number of promotions. The retailer may want to limit the total number of

promotions throughout the selling season. For example, at most LT = 20 promotions may be allowed

during the season. Mathematically, one can impose the following constraint:

N∑
i=1

T∑
t=1

Ki∑
k=1

γkit ≤LT . (1)

Note that LT should satisfy LT <
N∑
i=1

Li for this constraint to be relevant.

2. Inter-item ordinal constraints. Several price relations can be dictated by business rules. For

example, smaller size items should have a lower price relative to similar larger-sized products, and

national brands must be more expensive when compared to private labels. These constraints can

be captured by linear inequalities among the prices (e.g., if item i should be priced no higher than

item j, one can add the constraint: pit ≤ p
j
t ∀t).

3. Simultaneous promotions. Sometimes, retailers require particular items to be promoted simul-

taneously as part of a manufacturer incentive or a special promotional event. If items i and j should

be promoted simultaneously, one can impose: γ0i
t = γ0j

t ∀t, where γ0i
t (resp. γ0j

t ) is a binary variable

that is equal to 1 if item i (resp. item j) is not promoted at time t.

4. Limited number of promotions in each period. One can impose a limitation on the number

of promotions in each time period. For example, at most Ct = N
10

promotions may be allowed i.e.,

only at most 10% of the items. Mathematically, we have:

N∑
i=1

Ki∑
k=1

γkit ≤Ct ∀t. (2)

5. Cross no-touch constraints. An additional requirement can be to space out the promotions of

a set of similar items by a minimal number of separating periods, denoted by Sc. As before, this is
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motivated by the wish to preserve the store image and to mitigate the incentives for consumers to

be deal-seekers. In this case, we need to separate successive promotions for two (or more) products.

Mathematically, one can impose:
∑
i

t+Sc∑
τ=t

Ki∑
k=1

γkiτ ≤ 1 ∀t, where the sum on i can be over any given

subset of items in the category. Note that when Sc = 0, this corresponds to never promoting the

items simultaneously in order to impose an exclusive offer (very common in practice).

3.3. Problem Formulation

In what follows, we present the promotion optimization problem for multiple items:

max
γikt

N∑
i=1

T∑
t=1

(pit− cit)dit
(
pit, p

i
t−1, . . . , p

i
t−Mi ,p

−i
t

)
s.t. pit =

Ki∑
k=0

qikγikt ∀i

T∑
t=1

Ki∑
k=1

γikt ≤Li ∀i

t+Si∑
τ=t

Ki∑
k=1

γikτ ≤ 1 ∀i, t

Ki∑
k=0

γikt = 1 ∀i, t

N∑
i=1

T∑
t=1

Ki∑
k=1

γkit ≤LT

N∑
i=1

Ki∑
k=1

γkit ≤Ct ∀t

γikt ∈ {0,1} ∀i, t, k

(Multi-POP)

In this problem, the objective is to maximize the total profit from all the N items during the

selling season. Note that in the formulation above, we include all the self business rules, as well

as the constraints on the total limited number of promotions from (1), and on the limited number

of promotions in each period from (2). One can naturally include additional cross-item business

rules into the formulation, depending on the requirements. It is worth mentioning that even in the

absence of cross-item business rules, the N items are linked through the cross-item effects present

in the demand functions.

Summary of Notation:

T - Length of the selling season.

N - Number of different items in the category.

cit - Cost of item i at time t (assumed to be known).

pit - Price of item i at time t (decision variable).
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p−it - Vector of prices of all items but i at time t.

dit
(
pit, p

i
t−1, . . . , p

i
t−Mi ,p

−i
t

)
- Demand of item i at time t, which is assumed to be a function of the

self current and past prices as well as of the cross current prices (estimated from data).

M i - Memory parameter of item i, i.e., the number of past prices that affect the current demand

(estimated from data).

Li - Limitation of the number of promotions for item i.

Si - No-touch period for item i, i.e., the minimal number of time between two successive promotions.

Ki - Number of promotion prices in the price ladder of item i.

q0 - Regular price (assumed to be the same across the different items).

|Qi|=Ki + 1 - Total number of possible prices for item i.

qik - Price point k for item i (k= 1, . . . ,Ki).

γikt - Binary decision variable to indicate if the price of item i at time t is equal to qik.

MPOP - Objective function of the (Multi-POP) problem, i.e., the total profit generated by all

items at all times.

SPOP - Objective function of the problem for a single item.

4. Solution Approach

Our goal is to solve the optimization problem (Multi-POP). Since the problem is a nonlinear Integer

Program, solving the formulation efficiently is not straightforward. Consequently, we develop an

approximation solution approach. The requirements are twofold: (i) the solution method needs

to be efficient and to run fast, and (ii) the approximation solution needs to be near optimal. In

retail settings, retailers typically solve the (Multi-POP) problem for a large number of items. In

addition, retailers often solve several instances of the problem in order to test the robustness of

the solution before implementing it. More precisely, these routine tests are called what-if scenarios.

They consist of solving perturbed versions of the nominal optimization problem, where some of

the demand parameters and some of the business are rules are slightly modified (more details are

discussed in Section 5.2). In what follows, we describe the solution approaches developed in Cohen

et al. (2017) and in Cohen et al. (2018).

4.1. Single Item Setting

We first present an efficient solution approach to solve the single item problem. While the most

interesting and relevant case is the problem with multiple items, the single item setting is used as

a starting point for the presentation, and is interesting in its own right. In some retail categories,

the different items can be independent, i.e., the demand of each item depends solely on its prices,

and not on the prices of the other items. In this case, the (Multi-POP) problem decomposes in N
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independent single item problems (assuming that there are no cross-item business rules), and one

can solve each problem separately.

Even in the case of a single item, the problem is hard to solve (the problem is shown to be

NP-hard in Cohen et al. 2016). We observe that the constraints in the (Multi-POP) formulation

are linear. However, the objective function is nonlinear, and usually neither concave nor convex,

as we do not want to impose restrictions on the form of the demand functions. This motivates us

to propose a way to approximate the objective function by using a linear approximation, and by

exploiting the discrete nature of the problem. In particular, we approximate the objective function

by the sum of the marginal contributions of having a single promotion at a time. For example, if

the item is on promotion at times 2, 3, and 7, we approximate the objective by the sum of the

marginal deviations of having a single promotion at time 2, a single promotion at time 3, and a

single promotion at time 7. We next present this approach, called App(1), in more detail.

The App(1) approximation method ignores the second-order interactions between promotions

and captures only the direct effect of each promotion. Since we consider the same set of constraints

as in the original problem, the solution remains feasible. We next introduce some additional nota-

tion. We consider a particular item, and hence we drop the superscript i in the remaining of this

subsection. For a given price vector p = (p1, . . . , pT ), we define the corresponding total profit (of

the item under consideration) throughout the season:

SPOP (p) =
T∑
t=1

(pt− ct)dt(pt).

Next, we define the price vector pk
t such that the promotion price qk is used at time t, and the

regular price q0 (no promotion) is used at all the remaining periods. We denote the regular price

vector by p0 = (q0, . . . , q0), for which the regular price is set at all the time periods. We define the

coefficients bkt as follows:

bkt = SPOP (pk
t )−SPOP (p0). (3)

The coefficients in (3) represent the unilateral deviations in the total profit by using a single

promotion. One can compute these TK coefficients before starting the optimization procedure so

that it does not affect the complexity of the method. The approximated objective function is then

given by:

SPOP (p0) + max
γkt

T∑
t=1

K∑
k=1

bkt γ
k
t , (4)

while the set of constraints is the same as in the original problem. Consequently, the approxima-

tion optimization problem is linear, and can be solved using a solver. As mentioned before, two
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important requirements for our solution approach are (i) a low running time, and (ii) a close to

optimal solution. We next summarize the properties (both theoretical and practical) for the single

item setting.

Summary for the single item setting: We solve the promotion optimization problem for a

single item by using the App(1) approximation. This approximation linearizes the objective solution

by computing the sum of the marginal contributions of each promotion separately. The following

properties hold:

• The formulation is integral, i.e., one can solve the problem by considering the Linear Pro-

gramming (LP) relaxation.

• Under two general demand models which are discussed below (multiplicative and additive),

we derive a parametric worst-case bound on the quality of the approximation relative to the

optimal profit.

• In many tested instances (calibrated with retail data), the approximation yields a solution

which is optimal or very close to optimal.

We next discuss the implications of the above summary. Since one can get a solution by solving an

LP, the approach is efficient (we can solve large instances in milliseconds). Consequently, the retailer

can use this approach in practical settings. The approach works for general demand function, and

for any objective function. If we further impose some structure on the demand function, we can

derive a parametric bound on the quality of the approximation. We do so by considering two

general classes of demand functions:

1. Multiplicative demand:

dt
(
pt, pt−1, . . . , pt−M

)
= ft(pt) · g1(pt−1) · g2(pt−2) · · ·gM(pt−M), (5)

where the demand (of the item under consideration) can be written as the product of M

functions that each depends on a single price. Note that since we consider a single item setting,

the demand does not depend on the prices of the other items. The class of demand functions

in (5) includes the log-log and the log-linear functions, which are commonly used in retail.

2. Additive demand:

dt
(
pt, pt−1, . . . , pt−M

)
= ft(pt) + g1(pt−1) + g2(pt−2) + . . .+ gM(pt−M), (6)

where the demand (of the item under consideration) can be written as the sum of M functions

that each depends on a single price. Note that the class of demand functions in (6) includes

the linear function as a special case.

For the two classes of demand functions presented above, one can derive bounds on the quality of

the App(1) approximation. These bounds explicitly depend on the problem parameters, and depict

a very high performance on all the instances we tested based on retail data. More details can be

found in Cohen et al. (2017).
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4.2. Multiple Items

In this section, we consider the more general setting where the retailer needs to decide the prices of

N interconnected items by solving the (Multi-POP) problem. Recall that in this case, a promotion

in item i may have an effect on the demand of item j 6= i. The cross-item effects on demand

can be directly estimated from data. A potential simple approach can be the following: Solve the

(Multi-POP) problem by applying the App(1) solution approach, i.e., approximate the objective

by the sum of the marginal contributions of each item at each time period (as discussed in Section

4.1). We tested this approach, and observed a poor performance (especially in cases where the

cross-item effects are significant). In particular, it fails to accurately capture the cross-item effects,

and may find a promotion strategy far from optimal. For example, it may suggest to promote two

items simultaneously, whereas this pair of items highly cannibalize each other. As a result, one

needs to develop an alternative solution approach that can capture the cross-item effects, and at

the same time remains efficient. We introduce the following sequence of methods, App(κ), for any

given κ= 1,2, . . . ,N .

• App(1) is the approximation applied to (Multi-POP) in a similar fashion as in the single

item setting discussed in Section 4.1. In particular, it approximates the objective function by

the sum of the marginal contributions of a single promotion for each item and time period

separately. As we previously discussed, in the case of multiple items, it will generally provide

a poor performance guarantee relative to the optimal solution.

• App(2) is an alternative approximation applied to (Multi-POP) that includes the marginal

contributions (same as App(1)), as well as the pairwise contributions (i.e., having two items

promoted at the same time). App(2) is described in full details below.

• App(N) is an alternative approximation that includes the marginal contributions, the pairwise

contributions, and so on, up to all the possible combinations of having the N items promoted

simultaneously.

One can also naturally consider any intermediate method for 2 < κ < N . Note that there is a

clear trade-off between simplicity (as well as speed) and performance (in terms of accuracy of the

approximation relative to the optimal solution). On one extreme, App(1) is a simple approach that

only requires computing the marginal contributions of having a single promotion at a time, but can

perform poorly as it does not capture the cross-item effects at all. On the other extreme, App(N)

is clearly more accurate, as it successfully captures all the cross-item effects. But this benefit comes

at the expense of being more complex, as one needs to compute the marginal contribution of each

possible combination of items that could be promoted simultaneously. In particular, it requires us

to compute an exponential number of coefficients, and to solve an Integer Program (IP) that grows

exponentially with the number of items. Note that when T = 1 or M i = 0 ∀i, App(N) is exact
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as it captures accurately all the cross-item effects. Nevertheless, for a general dynamic problem

with T > 1 periods and non-zero memory parameters, App(N) is still not an exact algorithm, as it

approximates the time effects induced by the past prices. We next describe App(2) in more details

as it will be used in the sequel.

As we previously mentioned, App(2) approximates the objective of (Multi-POP) by the sum of

unilateral deviations (i.e., having a single promotion at a time) and the pairwise contributions (i.e.,

having two items promoted simultaneously). More precisely, the approximated objective is:

MPOP (p0) + max
γ

{ N∑
i=1

T∑
t=1

Ki∑
k=1

bkit γ
ki
t +

N∑
i,j:i>j

T∑
t=1

Ki∑
k=1

Kj∑
`=1

bk`ijt γk`ijt

}
, (7)

where the coefficients bkit and bk`ijt are formally defined in equations (8) and (9) respectively. We

denote the regular price vector by p0 = (q0, . . . , q0), which means that the regular price is set for

all items at all times. The first term, denoted by MPOP (p0), represents the total profit generated

by all the items throughout the selling season, without any promotion. The second term captures

all the marginal contributions of having a single promotion, i.e., for one item at one time period.

More precisely, we define the price vector pkj
t as follows:

(pkj
t )τ =

{
qkj; if τ = t and i= j,

q0; otherwise.

In other words, the vector pkj
t has the promotion price qkj for item j at time t, and the regular

price q0 (no promotion) is used at all the remaining periods for item j, and for all the other items

at all times. The coefficient bkjt is then given by:

bkjt =MPOP (pkj
t )−MPOP (p0), (8)

and represents the marginal contribution in the total profit by having a single promotion for item

j at time t, using price qkj.

The third term in equation (7) represents all the pairwise contributions of having two items on

promotion at the same time. More precisely, we define the price vector pk`ju
t for any pair of items

j > u as follows:

(pk`ju
t )τ =


qkj; if τ = t and i= j,

q`u; if τ = t and i= u,

q0; otherwise.

In other words, the vector pk`ju
t uses the promotion price qkj for item j at time t, the promotion

price q`u for item u at time t, and the regular price q0 for items j and u in all the remaining periods,

and for all the other items at all times. The coefficient bk`jut is given by:

bk`jut =MPOP (pk`ju
t )−MPOP (pkj

t )−MPOP (p`ut ) +MPOP (p0), (9)



Cohen and Perakis: Optimizing Promotions for Multiple Items in Supermarkets
18

and represents the marginal pairwise contribution in the total profit by having two simultaneous

promotions. Finally, in order to make the formulation consistent, we should ensure that when

both items i and j are on promotion, we count the pairwise contribution but also both unilateral

deviations, i.e., for each pair of items i and j < i, γkit = γ`jt = 1 if and only if γk`ijt = 1 for each t

and k, `. One can encode this set of conditions by incorporating the following constraints to the

formulation for each pair of items i, j < i, each t, and each promotion prices qki and q`j:

γk`ijt ≤ γkit ,

γk`ijt ≤ γ`jt ,

γk`ijt ≥ 0,

γk`ijt ≥ γkit + γ`jt − 1.

When maximizing the objective of the approximated problem in equation (7), the decisions are

the binary variables γ. In particular, there is one such variable for each item/time/price (i.e.,

NT (K + 1), assuming for simplicity that Ki =K ∀i), and one such variable for any pair of items

i > j at each time/price (i.e., N(N−1)
2

TK2). As we previously mentioned, for App(N), this number

grows exponentially with N and K and hence, it may not be practical to go beyond App(3) or

App(4). We next summarize the main results for the multiple item setting.

Summary for the multiple item setting: We solve the promotion optimization problem for

multiple items by using the App(2) approximation. The following properties hold:

• Assuming that the cross-item effects for each item are additively separable, i.e.,

dit
(
pit, p

i
t−1, . . . , p

i
t−Mi ,p

−i
t

)
= hit

(
pit, p

i
t−1, . . . , p

i
t−Mi

)
+
∑
j 6=i

Hji
t (pjt), (10)

then App(2) =App(3) = . . .=App(N).

• If we further assume that the function hit
(
pit, p

i
t−1, . . . , p

i
t−Mi

)
is additively separable for each

item, i.e.,

hit
(
pit, p

i
t−1, . . . , p

i
t−Mi

)
= f it (p

i
t) + gi1(p

i
t−1) + . . .+ giMi

(pit−Mi), (11)

then the App(2) solution is optimal.

• Consider the class of demand models in (10) and Ki = 1 (i.e., the regular price and a single

promotion price). For substitutable items, the App(2) formulation can be solved efficiently in

the absence of business rules.

• Under two general demand models (multiplicative and additive price dependence), we derive

a parametric bound on the quality of the approximation relative to the optimal profit.
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• In many tested instances, the approximation yields a solution which is optimal or very close

to optimal.

We next discuss the implications of the above summary. Interestingly, for demand functions with

additively separable cross-item effects (in practice, several demand models satisfy this property),

it is sufficient to consider App(2) as opposed to include higher order terms. In the special case

where each item can take two prices, the App(2) approximation can be solved efficiently when all

the items are substitutable. Having two prices is common in practice as the promotion price is

often negotiated upfront with the manufacturer. In the more general case, where the retailer can

choose among several promotion prices, we observed computationally that one can still solve the

IP within low runtimes for realistic size instances. It is worth mentioning that for most categories

of supermarket items, the products within a category are either independent (i.e., no cross-item

effects) or substitutable. In particular, for categories such as coffee, tea and chocolate, we could

not find any complementarity effects in the data we analyzed. Note also that even if some of the

products are complement, we observed by extensive testing that solving the relaxation of the App(2)

formulation yields an optimal integer solution very often. More details on such computational tests

are presented in Cohen et al. (2018).

5. Insights and Practical Impact

In this section, we summarize the insights we have been able to draw by solving the (Multi-POP)

using our solution approach. We then describe how to concretely apply our model to a real-world

retail setting.

5.1. Insights

We briefly discuss several insights that were drawn by using our promotion optimization model.

Very often, retailers want to infer the impact of promoting the different items at the different time

periods. Our solution approach can easily be used to test various promotion strategies in order to

reach a better understanding on the impact of retail promotions. As we mentioned before, several

economic factors are present in the context of our problem: the cross-item effects on demand,

the post-promotion dip effect, the seasonality, and the presence of business rules. It is definitely

valuable for the retailer to learn the tradeoffs between these different effects, and to understand

how they impact the promotion decisions. Our model can help retailers to deepen their knowledge

on the following topics:

• Understanding the structure of the cross-item effects: In a given category of items,

the retailer needs to decide the price promotions by accounting for the cross-item effects on

demand. Using our model, the retailer can infer the impact of promoting a specific item on the

demand of each item in the category. This can ultimately allow the retailer to carefully decide
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which set of items should be promoted simultaneously, and which should not. For example,

when two (or more) items have strong substitution effects (i.e., promoting an item increases

its own sales, but also significantly decreases the sales of the other items), the retailer should

not promote those items. More details on such insights can be found in Cohen et al. (2018).

• Inferring the strength of the post-promotion dip effect: It is well known that promoting

a FMCG product induces a boost in its current demand as well as a potential decrease in

its future demand, due to the stockpiling behavior of consumers and the promotion fatigue

effect. The strength of the post-promotion dip effect can vary significantly depending on the

category under consideration. For example, in Cohen et al. (2017), the authors found that the

number of past prices that affect the current demand (which is one possible way to measure the

post-promotion dip effect) highly depends on the item and on the category. For example, the

post-promotion dip effect tends to be weaker for perishable products and for luxury/expensive

brands, as expected.

• Identifying the presence of a loss leader effect: The loss leader is a common phenomenon

in which one item is priced below its cost in order to extract significant profits on comple-

mentary items (see, e.g., Hess and Gerstner 1987). It is reported in Cohen et al. (2018) that

the model considered in this chapter can identify the presence of a loss-leader effect. This can

be a very important information for the retailer that can use one (or more) items in order to

profitably trigger a loss-leader strategy.

• Learning the impact of the business rules: As discussed in Section 4, the retailer can

easily solve several instances of the problem, with and without the presence of some of the

business rules. Consequently, this allows the retailer to quantify the profit impact of relaxing

some of the business requirements. This can ultimately help retailers decide which vendor

funds to accept and under what terms.

In practice, retailers often solve the (Multi-POP) for large scale instances that involve a large

number of different factors. It does not seem possible for managers, as experienced as they are, to

understand and anticipate the impact of all the conflicting tradeoffs. Using an optimization tool

calibrated with actual data can take into account all the different tradeoffs, and compute a close

to optimal solution for the promotion planning problem.

5.2. Practical Impact

We next consider a concrete application of the (Multi-POP) optimization problem. We propose

a generic process that can be used by any retailer who seeks to improve its promotion planning

decisions. This process consists of the five following steps:

1. Data collection, cleaning, and aggregation,
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2. Store and product clustering,

3. Demand estimation,

4. Optimization and sensitivity analysis,

5. Quantifying the impact.

We next describe each step in more details.

Data collection, cleaning, and aggregation: The first step is to collect and store the rel-

evant data. In our context, retailers need to simply collect the data from the past transactions.

Each observation typically includes: the store, the date/time, the items purchased, the prices, the

promotion vehicles that were used, as well as various features of the item (brand, size, flavor, etc.).

After gathering a large enough dataset, one needs to carefully clean the data, and perform the

appropriate aggregations. Various techniques exist for cleaning and aggregating data but this is

beyond the scope of this chapter (see, e.g., the book by Han et al. 2011). At a high level, one wants

to deal with the missing data, remove the outliers, and perform some basic statistical tests. Once

the data is cleaned, one needs to decide the level of aggregation. Depending on the context, one

can perform the analysis at the brand, item, or category level. Similarly, one can aggregate the

data at the week, day, or hour level. Once the data is cleaned and aggregated at the right level,

one can start using it for estimation and prediction purposes. For example, in Cohen et al. (2017),

the authors decided to aggregate the data at the brand-week level.

Store and product clustering: In many retail settings, the available historical data can be

sparse. As a result, one needs to combine the data from multiple sources in order to obtain more

reliable forecasts. Two common techniques widely used in retail consist of merging several stores

together or clustering similar products. The idea is to use the data from several stores that share

similar features (e.g., geographical location, size, management team). Similarly, items from the

same brand (e.g., different sizes or flavors) can often be clustered together so as to improve the

prediction accuracy of the models.

Demand estimation: This step is the actual first stage of using our promotion optimization

model. As an input to the optimization, one first needs to estimate the demand models. The modeler

has several degrees of freedom: choice of the demand function (e.g., log-log, log-linear), selection of

the dependent variables, choice of the instrumental variables (if any), and choice of the estimation

procedure. In many applications, one can simply run a linear regression (e.g., ordinary or weighted

least squares, ridge regression, lasso). The typical process also includes splitting the data for out-of-

sample testing. The demand estimation step is completed once the prediction models yields a high

accuracy out-of-sample. In practice, one needs to test different models and assumptions in order to

reach a good and robust prediction model. In Cohen et al. (2017), the authors present a prediction

model for two coffee brands based on using ordinary least squares to predict a log-log model that
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includes past prices, weekly seasonality, and the trend effect. The resulting out-of-sample R2 (resp.

MAPE) was around 0.90 (resp. 0.11).

Optimization and sensitivity analysis: Once the demand models are accurately estimated

from data, one can use them as an input to the (Multi-POP). The retailer also needs to specify

the various business rules that need to be satisfied, the number of time periods in the selling

season, and the cost of each item at each time period. At this point, one can use the App(2)

approximation method presented in Section 4.2 to solve the problem. As discussed before, this

yields a near optimal solution by computing the price promotions of all the items during each

period of the selling season. Usually, retailers want to check the robustness of the solution prior to

a potential implementation. To this end, one can resolve the (Multi-POP) by perturbing several

input parameters (e.g., estimated demand coefficients, business rules parameters). If the suggested

solution appears to be robust with respect to variations in the problem input, this provides a higher

confidence on the validity of the solution.

Quantifying the impact: The last step is to assess the potential impact of the entire process.

For example, one can compare the simulation results obtained by using the optimized promotion

prices relative to the profit generated by using the original promotion prices set by the retailer. In

our experience, by applying our model to several retailers, we observed a profit improvement of

2-9%, depending on the product category and the store under consideration.

6. Conclusions

Retail promotions are important decisions faced by most retailers. Promoting the right set of

items at the right time using the right price points can have a significant impact on the retailer’s

bottom line. In settings such as supermarkets, the retailer needs to simultaneously decide the

price promotions for multiple items throughout the selling season. Historically, many retailers were

designing their promotion strategy based on past experience and on trial-and-error attempts. The

unprecedented volume of available data has now changed the picture. Using past transactions

data, retailers can improve the demand forecasting accuracy, and exploit the data to develop

quantitative tools for promotion planning. In particular, the combination of data analytics and

optimization allows retailers to decide promotions in a more systematic and profitable fashion. In

this chapter, we considered a retailer selling FMCG products who needs to decide the (mass) price

promotions for all the items in a category. We first formulated the problem as a nonlinear integer

optimization program. This formulation holds under general demand functions estimated from

data, and includes several practical business rules on price promotions. Given that the resulting

formulation is hard to solve, we presented an approximation solution approach. This approach can

solve the problem efficiently in short timeframes, and admits a parametric worst-case bound on
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the quality of the approximation. We first considered the single item setting, and then extended

the presentation to the more general instance with multiple items. In each case, we presented the

model, the approximation solution approach, and its analytical and practical properties. Overall,

the methods presented in this chapter run fast, and provide a near optimal solution for many tested

instances (calibrated with actual retail data).

We then summarized an application of this model to a real-world setting. In particular, we

proposed a beginning-to-end process for retailers that consists of five steps: (1) Data collection,

cleaning, and aggregation, (2) Store and product clustering, (3) Demand estimation, (4) Optimiza-

tion and sensitivity analysis, and (5) Quantifying the impact. By following these steps, retailers

can potentially improve their promotion planning process. In our own experience, we observed a

profit improvement of 2-9%, which is a significant impact in the retail industry.

While most of the results presented in this chapter are borrowed from previous publications

(mainly from Cohen et al. 2017, 2018), it provides a summary of this line of research by presenting

the different complementary studies in a single report. This chapter has focused on the mass pricing

promotion optimization problem faced by a retailer who sells FMCG products. As we mentioned in

Section 1, several alternative promotion problems are also important in retail. Interesting research

directions can be the development of new decision tools based on data analytics and optimization

for those practical retail problems.
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