
MANAGEMENT SCIENCE
Vol. 65, No. 7, July 2019, pp. 3255–3271

http://pubsonline.informs.org/journal/mnsc/ ISSN 0025-1909 (print), ISSN 1526-5501 (online)

Overcommitment in Cloud Services: Bin Packing with
Chance Constraints
Maxime C. Cohen,a Philipp W. Keller,b Vahab Mirrokni,c Morteza Zadimoghaddamc

aNYU Stern School of Business, New York, New York 10012; b Facebook, Menlo Park, California 94043; cGoogle Research, New York,
New York 10011
Contact: maxime.cohen@stern.nyu.edu, http://orcid.org/0000-0002-2474-3875 (MCC); pkeller@fb.com (PWK); mirrokni@google.com (VM);
zadim@google.com (MZ)

Received: August 12, 2016
Revised: October 2, 2017; March 1, 2018
Accepted: March 13, 2018
Published Online in Articles in Advance:
January 28, 2019

https://doi.org/10.1287/mnsc.2018.3091

Copyright: © 2019 INFORMS

Abstract. This paper considers a traditional problem of resource allocation: scheduling
jobs on machines. One such recent application is cloud computing; jobs arrive in an online
fashion with capacity requirements and need to be immediately scheduled on physical
machines in data centers. It is often observed that the requested capacities are not fully
utilized, hence offering an opportunity to employ an overcommitment policy, that is, selling
resources beyond capacity. Setting the right overcommitment level can yield a significant
cost reduction for the cloud provider while only inducing a very low risk of violating
capacity constraints. We introduce and study a model that quantifies the value of over-
commitment by modeling the problem as bin packing with chance constraints. We then
propose an alternative formulation that transforms each chance constraint to a submodular
function. We show that our model captures the risk pooling effect and can guide
scheduling and overcommitment decisions. We also develop a family of online algorithms
that are intuitive, easy to implement, and provide a constant factor guarantee from op-
timal. Finally, we calibrate our model using realistic workload data and test our approach
in a practical setting. Our analysis and experiments illustrate the benefit of over-
commitment in cloud services and suggest a cost reduction of 1.5% to 17%, depending on
the provider’s risk tolerance.

History: Accepted by Yinyu Ye, optimization.
Supplemental Material: The online appendices are available at https://doi.org/10.1287/mnsc.2018.3091.

Keywords: bin packing • approximation algorithms • cloud computing • overcommitment

1. Introduction
Bin packing is an important problem with numerous
applications, such as hospitals; call centers; filling up
containers; loading trucks with weight capacity con-
straints; creating file backups; andmore recently, cloud
computing. A cloud provider needs to decide how
many physical machines to purchase to accommodate
the incoming jobs efficiently. This is typically modeled
as a bin-packing optimization problem; one minimizes
the cost of acquiring the physical machines subject to
a capacity constraint for each machine. The jobs are
assumed to arrive in an online fashion according to
a given arrival process. In addition, the jobs come
with a specific requirement, but the effective job size
and duration are not exactly known until the actual
scheduling has occurred. In practice, job size and du-
ration can be estimated from historical data. One
straightforward way to schedule jobs is to assume that
each job will fully utilize its requirement (e.g., if a job
requests 32 CPU cores, the cloud provider allocates this
exact amount). However, there is empirical evidence
that most of the virtual machines do not use the full
requested capacity. This offers an opportunity for the

cloud provider to employ an overcommitment policy,
that is, to schedule sets of jobs with the total re-
quirement exceeding the capacities of physical ma-
chines. On the one hand, the provider faces the risk that
usage exceeds the physical capacity, which can result in
severe penalties (e.g., acquiring or reallocating ma-
chines on the fly, canceling and rescheduling running
jobs, mitigating interventions). On the other hand, if
many jobs do not fully utilize their requested resources,
the provider can potentially reduce the costs signifi-
cantly. This becomes even more impactful in the cloud
computing market, which has become increasingly
competitive in recent years as Google, Amazon, and
Microsoft aim to replace private data centers. “The race
to zero price” is a commonly used term for this industry,
in which cloud providers have cut their prices very
aggressively. According to an online article in Business
Insider in January 2015, “Amazon Web Services (AWS),
for example, has cut its price 44 times during 2009-2015,
while Microsoft and Google have both decreased prices
multiple times to keep up with AWS. RBC Capital’s
MarkMahaney published a chart that perfectly captures
this trend and shows that the average monthly cost per

3255

http://pubsonline.informs.org/journal/mnsc/
mailto:maxime.cohen@stern.nyu.edu
http://orcid.org/0000-0002-2474-3875
http://orcid.org/0000-0002-2474-3875
mailto:pkeller@fb.com
mailto:mirrokni@google.com
mailto:zadim@google.com
https://doi.org/10.1287/mnsc.2018.3091
https://doi.org/10.1287/mnsc.2018.3091

gigabyte of RAM has dropped significantly: AWS drop-
ped prices 8% fromOctober 2013 to December 2014 while
both Google and Microsoft cut prices by 6% and 5%,
respectively, in the same period. Other companies who
charge more, such as Rackspace and AT&T, dropped
prices even more significantly.”

As a result, designing the right overcommitment
policy for servers has a clear potential to increase the
cloud provider’s profit. The goal of this paper is to study
this question and propose a model that helps guide this
type of decisions. In particular, we explicitly model job
size uncertainty to motivate new algorithms and eval-
uate them on realistic workloads. Our model and ap-
proaches are not limited to cloud computing and can be
applied to several resource-allocation problems. How-
ever, we illustrate most of the discussions and appli-
cations using examples borrowed from the cloud
computing world. Note that describing the cloud in-
frastructure and hardware is beyond the scope of this
paper. For surveys on cloud computing, see, for example,
Fox et al. (2009) and Dinh et al. (2013).

We propose to model the problem as bin packing
with chance constraints,that is, the total load assigned
to each machine should be below physical capacity
with a high, prespecified probability. Chance con-
straints are a common modeling tool to capture risks
and constraints on random variables (Charnes and
Cooper 1963). Introducing chance constraints to sev-
eral continuous optimization problemswas extensively
studied in the literature (see, e.g., Calafiore and El Ghaoui
2006 and Delage and Ye 2010). This paper is among the
first to incorporate capacity chance constraints in the
bin-packing problem and to propose efficient algo-
rithms to solve it. Using results from distributionally
robust optimization (Calafiore and El Ghaoui 2006), we
reformulate the problem as bin packingwith submodular
capacity constraints. Our reformulations are exact under
independent Gaussian resource usages. More generally,
they provide an upper bound and a good practical ap-
proximation in the realistic case in which the jobs’ usages
are arbitrarily distributed but bounded.

Using some machinery from previous work (see
Goemans et al. 2009 and Svitkina and Fleischer 2011),
we show that for the bin-packing problem with gen-
eral monotone submodular constraints, it is impossible
to find a solution within any reasonable factor from
optimal (more precisely,

��
N

√
ln(N), whereN is the number of

jobs). In this paper, we show that our problem can be
solved using a class of simple online algorithms that
guarantee a constant factor of 8/3 from optimal
(Theorem 2). This class of algorithms includes the
commonly used best-fit and first-fit heuristics. We
also develop an improved constant guarantee of
9/4 for the online problem (Theorem 4) and a two-
approximation for the off-line version (Theorem 6). We
further refine our results to the case in which a large

number of jobs can be scheduled on each machine (i.e.,
each job has a small size relative to the machine ca-
pacity). In this regime, our approach asymptotically
converges to a 4/3 approximation. More importantly,
our model and algorithms allow us to draw interesting
insights on how one should schedule jobs. In particular,
our approach (i) translates to a transparent recipe on
how to assign jobs to machines, (ii) explicitly exploits
the risk-pooling effect, and (iii) can be used to guide an
overcommitment strategy that significantly reduces the
cost of purchasing machines.
We apply our algorithm to a synthetic but realistic

workload inspired by historical production workloads
in Google data centers and show its good perfor-
mance. In particular, our method reduces the necessary
number of physical machines while limiting the risk
borne by the provider.

1.1. Contributions
Scheduling jobs on machines can be modeled as a bin-
packing problem. Jobs arrive online with their re-
quirements, and the scheduler decides how many
machines to purchase and how to schedule the jobs.
The objective is to minimize the number of machines,
subject to capacity constraints on each machine. In this
paper, we model the capacity constraints as chance
constraints and study the potential benefit of over-
commitment. Our contributions can be summarized as
follows.
• Formulating the overcommitment bin-packing

problem. We discuss an optimization formulation for
scheduling jobs on machines while allowing the pro-
vider to overcommit. We first model the problem as bin
packing with chance constraints (BPCC). Then we present
an alternative submodular bin-packing (SMBP) formula-
tion that explicitly captures the risk-pooling effect on
each machine. We show that SMBP is equivalent to
BPCC under independent Gaussian usage distributions
and that it is distributionally robust for usages with
given means and a diagonal covariance matrix. Perhaps
most importantly from a practical perspective, SMBP
provides an upper bound and a good approximation
under generic independent distributions over bounded
intervals (see Proposition 1).
• Developing simple algorithms that guarantee

a constant factor approximation from optimal. We
show that the (SMBP) can be solved by well-known
online algorithms, such as first fit and best fit, while
guaranteeing a factor of 8/3 from optimal (Theorem 2).
We further refine this result in the case in which
a large number of jobs can be scheduled on each ma-
chine and obtain a 4/3 approximation asymptotically
(Corollary 1). We also develop an improved constant
guarantee of 9/4 for the online problem using first
fit (Theorem 4), and a two-approximation for the
off-line version (Theorem 6). We then use our analysis

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3256 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

to infer how one should assign jobs to machines and
show how to obtain a nearly optimal assignment
(Theorem 5).

• Using our model to draw practical insights on
the overcommitment policy.Our approach translates
to a transparent and meaningful recipe on how to
assign jobs to machines by clustering similar jobs in
terms of statistical information. In addition, our ap-
proach explicitly captures the risk-pooling effect: as we
assign more jobs to a given machine, the “safety buffer”
needed for each job decreases. Finally, our approach can
guide practical overcommitment strategies to reduce the
cost of purchasing machines by allowing a low risk of
violating capacity constraints.

• Calibrating and applying our model to a practical
setting. We use realistic workload data inspired by
Google Compute Engine to test our results. We observe
that our proposed algorithm outperforms other natural
scheduling schemes and achieves a cost saving of 1.5%
to 17% relative to the no-overcommitment policy.

1.2. Structure of the Paper
In Section 2, we present ourmodel and assumptions, and
in Section 3 we review the relevant literature. Then we
present the results and insights for special cases in
Section 4. In Section 5, we consider the general case and
develop a class of efficient approximation algorithms that
guarantee a constant factor from the optimal number
ofmachines.We then exploit the structure of the problem
to obtain a nearly optimal assignment. In Sections 6 and 7,
we present extensions and computational experi-
ments, respectively. Finally, our conclusions are reported
in Section 8. Most of the proofs of the technical results
are relegated to the online appendix.

2. Model
In this section, we start by formulating the problem we
want to solve and then propose an alternative for-
mulation. As discussed, job requests for cloud services
(or other resource-allocation problems) come with a
requested capacity. This can be the memory or CPU
requirements for virtual machines in the context of
cloud computing or job duration in more traditional
scheduling problems in which jobs are processed se-
quentially.1 We refer to Aj as the size of job j and as-
sume that Aj is a random variable. Historical data can
provide insight into the distribution of Aj. For sim-
plicity, we first consider the offline version of the
problem in which all the jobs arrive simultaneously at
time 0, and our goal is to pack them onto the minimum
possible number of machines. Jobs cannot be delayed
or preempted. The methods we develop in this paper
can be applied to the more interesting online version of
the problem as we discuss in Section 5. We denote the
capacity of machine i by Vi. Motivated by practi-
cal problems, and in accordance with prior work, we

assume that all the machines have the same capacity,
that is, Vi � V;∀i. In addition, each machine has the
same cost, and our goal is to maximize the total profit
(or, equivalently, minimize the number of machines)
while scheduling all the jobs and satisfying the ca-
pacity constraints. Note that we consider a single-
dimensional problem in which each job has one
capacity requirement. Although cloud virtual ma-
chine packing may be modeled as a low-dimensional
vector bin-packing problem (Lee et al. 2011), one re-
source is often effectively binding and/or more
critical.2

2.1. Bin-Packing Problem
For the case in which Aj is deterministic, we obtain the
classical deterministic bin-packing problem:

B � min
xij,yi

∑N

i�1
yi

s.t.
∑N

j�1
Ajxij ≤Vyi ∀i

∑N

i�1
xij � 1 ∀j

xij ∈ {0, 1} ∀i, j
yi ∈ {0, 1} ∀i

(DBP)

For the offline version, we have a total ofN jobs, andwe
need to decide how many machines to purchase
(captured by the decision variable yi that is equal to 1 if
machine i is purchased and 0 otherwise). The solution is
a B-partition of the set {1, 2, . . . ,N} that satisfies the
capacity constraints. The decision variable xij equals to
1 if job j is assigned to machine i and 0 otherwise. As we
discuss in Section 3, there is extensive literature on the
DBP problem.
The problem faced by a cloud provider is typically

online in nature because jobs arrive and depart over time.
Unfortunately, it is not possible to continually resolve
the DBP problem as the data are updated because of
both practical and computational reasons. Keeping with
the majority of prior work, we start by basing our al-
gorithms on static, single-period optimization formu-
lations such as the DBP problem rather than explicitly
modeling arrivals and departures. The next section ex-
plains how, unlike prior work, our single-period opti-
mization model efficiently captures the uncertainty
faced by a cloud provider. We consider both the online
and off-line versions of our model.
We remark that, although our online analysis con-

siders sequentially arriving jobs, none of our results
explicitly consider departing jobs. This is in line with
the bin-packing literature, in which results typically
apply to general arrival processes {Aj}, but it is usually
assumed that packed items remain in their assigned
bins. In practice, a large cloud provider is likely to be

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3257

interested in a steady state in which the distribution
of jobs is stable over time even if individual jobs come
and go. Note that several works considers bin packing
with item departures (see, e.g., Stolyar and Zhong 2015
and the references therein). In this work, the authors
design a simple greedy algorithm for general packing
constraints and show that it can be asymptotically op-
timal. Nevertheless, Gupta and Radovanovic (2015)
show simulation results in which, for certain distribu-
tions, the best-fit algorithm under static packing is
suboptimal but is asymptotically optimal under dy-
namic packing.

2.2. Chance Constraints
The DBP problem suffers from the unrealistic as-
sumption that the jobs’ sizes Aj are deterministic. In
reality, jobs’ requirements can be highly unpredictable,
especially from the perspective of a cloud provider
with no control over the software executed in a virtual
machine. Ensuring that the capacity constraints are
satisfied for any realization of Aj generally yields
a conservative outcome. For example, if the jobs’ true
requirements are binary random variables taking on
either 0.3 or 1.0 with equal probability, one needs to
plan as if each job consumes a capacity of 1.0. By
overcommitting resources, the provider can reduce the
cost significantly. Caution is required though because
overcommitting can be expensive if not done prop-
erly. Planning according to the expected value (in the
previous example, 0.65), for instance, would result
in capacity being insufficient for several machines.
Depending on the specific resource and the degree of
violation, such performance could be catastrophic for
a cloud provider. Concretely, sustained CPU conten-
tion among virtual machines would materially affect
customers’ performancewhereas a shortage ofmemory
could require temporarily “swapping” some data to
a slower storage medium with usually devastating
consequences on performance. With this motivation in
mind, our goal is to propose a formulation that finds the
right overcommitment policy. We show that by slightly
overcommitting, one can reduce the costs significantly
while satisfying the capacity constraints with high
probability.

Although not strictly required by our approach, in
practice, there is often an upper bound on Aj, denoted
by Āj. In the context of cloud computing, Āj is the
requested capacity that a virtual machine is not
allowed to exceed (e.g., 32 CPU cores). However, the
job may end up using much less, at least for some time.
If the cloud provider schedules all the jobs according
to their respective upper bounds Āj, then there is no
overcommitment. If the jobs are scheduled according to

sizes smaller than Āj, then some of themachinesmay be
overcommitted.
We propose to solve a bin-packing problem with

capacity chance constraints. Chance constraints are
widely used in optimization problems, starting with
Charnes and Cooper (1963) for linear programs, and
more recently in convex optimization (Nemirovski
and Shapiro 2006) and in finance (see, e.g., Abdelaziz
et al. 2007). In our case, the capacity constraints are
replaced by

P

(
∑N

j�1
Ajxij ≤Vyi

)
≥α, (1)

where α represents the confidence level of satisfying
the constraint (α � 0.999, say) and is exogenously set by
the cloud provider. Note that when α � 1, this corre-
sponds to the setting with no overcommitment or, in
other words, to the worst-case solution that covers all
possible realizations of all the Aj’s. One of our goals
is to study the trade-off between the probability of
violating physical capacity and the cost reduction
resulting from a given value of α. The problem be-
comes bin packing with chance constraints, parame-
terized by α:

B(α) � min
xij ,yi

∑N

i�1
yi

s.t. P

(
∑N

j�1
Ajxij ≤Vyi

)
≥α ∀i

∑N

i�1
xij � 1 ∀j

xij ∈ {0, 1} ∀i, j
yi ∈ {0, 1} ∀i

(BPCC)

2.3. A Variant of Submodular Bin Packing
We next propose an alternative formulation that is
closely related to the (BPCC) problem. Under some
mild assumptions, we show that the latter is either
exactly or approximately equivalent to the following
submodular bin-packing problem:

BS(α) � min
xij,yi

∑N

i�1
yi

s.t.
∑N

j�1
µjxij +D(α)

����������
∑N

j�1
bjxij

√√
≤Vyi ∀i

∑N

i�1
xij � 1 ∀j

xij ∈ {0, 1} ∀i, j
yi ∈ {0, 1} ∀i (SMBP)

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3258 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

The difference between the (BPCC) and the (SMBP) is
the way the capacity constraints are written. Here, we
have replaced each chance constraint with a linear
term plus a square root term. These constraints are
submodular with respect to the vector x. The variable µj

denotes the expected value of Aj. The left-hand side of
the capacity constraint for eachmachine i in the (SMBP)
is a submodular function3 as shown in Atamtürk and
Narayanan (2008). In what follows, we consider dif-
ferent definitions of bj and D(α). The first two are
concrete motivational examples whereas the third one
is a generalization.

a. Gaussian Case. Assume that Aj are Gaussian and
independent. In this case, the random variable Z �
∑N

j�1Ajxij for any given binary vector x is Gaussian, and
therefore, one can use the following simplification:

P

(
∑N

j�1
Ajxij ≤Vyi

)
� P(Z≤Vyi)≥α .

For each machine i, constraint (1) becomes

∑N

j�1
µjxij + Φ−1(α) ·

�����������
∑N

j�1
σ2j xij

√√
≤Vyi, (2)

where Φ−1(·) is the inverse CDF of a normal N(0, 1),
µj � E[Aj], and σ2j � Var(Aj). Note that we have used
the fact that x is binary so that x2ij � xij. Consequently, the
(BPCC) and the (SMBP) are equivalent with the values
bj � σ2j andD(α) � Φ−1(α).WhenAj are independent but
not normally distributed, if there are a large number of
jobs per machine, one can apply the central limit
theorem and obtain a similar approximate argument.
In fact, using a result from Calafiore and El Ghaoui
(2006), one can extend this equivalence to any radial
distribution.4

b. Hoeffding’s Inequality. Assume that Aj are in-
dependent with a finite support [A j,Aj], 0≤A j <Aj

with mean µj. One can use historical data to estimate µj
and A j (see more details in Section 7). Assume that the
mean usagesfit on eachmachine, that is,

∑N
j�1xijµj < yiVi.

Then, Hoeffding’s inequality states that

P

(
∑N

j�1
Ajxij ≤Vyi

)
≥ 1− e

−2[Vyi −
∑N

j�1µjxij]2
∑N

j�1 (Aj −A j)
2
xij .

Equating the right hand side to α, we obtain

− 2
[
Vyi −

∑N
j�1µjxij

]2
∑N

j�1 bjxij
� ln(1−α),

where bj � (Aj −A j)
2
represents the range of job j’s

usage. Rearranging the equation, we obtain

∑N

j�1
µjxij +D(α)

����������
∑N

j�1
bjxij

√√
≤Vyi, (3)

where, in this case, D(α) � �������������������
− 0.5 ln(1−α)√

. Note that
in this setting the (BPCC) and the (SMBP) are not
equivalent. Instead, any solution of the latter is
a feasible solution for the former. We demonstrate in
Section 7 that, despite being conservative, this for-
mulation based on Hoeffding’s inequality actually
yields good practical solutions. The next case is
a generalization of the last two.

c. Distributionally Robust Formulations. Assume that
Aj are independent with some unknown distribution
that belongs to a family of probability distributions $.
We consider two commonly used examples of such
families: (i) the family $1 of distributions with a given
mean µ and (diagonal) covariance matrix Σ and (ii) the
family $2 of generic distributions of independent
random variables over bounded intervals [A j,Aj]. In
this setting, the chance constraint is enforced robustly
with respect to the entire family $ of distributions
on A � (A1,A2, . . . ,AN):

inf
A~$

P

(
∑N

j�1
Ajxij ≤Vyi

)
≥α. (4)

In this context, we have the following result.

Proposition 1. Consider the robust bin-packing problem
with the capacity chance constraints (4) for each machine i.
Then, for any α∈ (0, 1), we have
• For the family of distributions $1, the robust problem

is equivalent to the (SMBP) with bj � σ2j and D1(α) �������������
α/(1−α)√

.
• For the family of distributions$2, the robust problem

can be approximated by the (SMBP) with bj � (Aj −A j)
2

and D2(α) �
�������������������
− 0.5 ln(1−α)√

.

The details of the proof are omitted for conciseness.
In particular, the proof for $1 is analogous to an
existing result in continuous optimization that converts
linear programs with a chance constraint into a linear
program with a convex second-order cone constraint
(see El Ghaoui et al. 2003 and Calafiore and El Ghaoui
2006). The proof for $2 follows directly from the fact
that Hoeffding’s inequality applies for the infimum of
the probability distributions.
We have shown that the (SMBP) problem is a good

approximation for the bin-packing problem with chance
constraints. For independent random variables with
givenmean and covariance, the approximation is exact,

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3259

and for distributions over independent bounded in-
tervals, it yields a feasible solution. As discussed,
the capacity constraint in the (SMBP) is replaced by
the following equation, called the modified capacity
constraint:

∑N

j�1
µjxij +D(α)

����������
∑N

j�1
bjxij

√√
≤Vyi. (5)

One can interpret Equation (5) as follows. Each ma-
chine has a capacity V. Each job j consumes capacity µj
in expectation as well as an additional buffer to account
for the uncertainty. This buffer depends on two factors:
(i) the variability of the job, captured by the parameter bj,
and (ii) the acceptable level of risk through D(α). The
function D(α) is increasing in α, and therefore, we
impose a stricter constraint as α approaches one by
requiring the extra buffer to be larger. Equation (5) can
also be interpreted as a riskmeasure. For eachmachine i,
the total (random) load is

∑N
j�1Ajxij. If we consider

that µj represents the expectation and bj corresponds to

the variance, then
∑N

j�1µjxij and
�����������
∑N

j�1bjxij
√

correspond

to the expectation and standard deviation of the total
load on machine i, respectively. As a result, the right-
hand side of Equation (5) can be interpreted as an
adjusted risk utility, where D(α) is the degree of risk
aversion of the scheduler. The additional amount
allocated for job j can be interpreted as a safety buffer
to account for the uncertainty and for the risk that the
provider is willing to bear. In Section 5, we develop
efficient methods to solve the (SMBP) with ana-
lytical performance guarantees.

2.4. Two Naive Approaches
In this section, we explore the limitations of two ap-
proaches that come to mind. The first is to rewrite the
problem as a linear integer program (IP): the decision
variables are all binary, and the nonlinearity in (SMBP)
can actually be captured by common modeling tech-
niques (see Online Appendix A). Unfortunately, solv-
ing this IP is not a viable option. As for the classi-
cal deterministic bin-packing problem, solving even
moderately large instances with commercial solvers
takes several hours. Moreover, applying the approach
to smaller specific instances provides little insight
about the assignment policy and how the value of α
affects the solution. The second potential approach is
to develop an algorithm for a more general problem:
bin packing with general monotone submodular ca-
pacity constraints. Using some machinery and results
from Goemans et al. (2009) and Svitkina and Fleischer
(2011), we next show that it is, in fact, impossible to
find a solution within any reasonable factor from
optimal.

Theorem 1. Consider the bin-packing problem with general
monotone submodular capacity constraints for each ma-
chine. Then there exists no polynomial time algorithm with
an approximation factor better (i.e., smaller) than

��
N

√
ln(N).

The proof can be found in Online Appendix B. In the
rest of this paper, we show that the (SMBP) is more
tractable as it relates to a specific class of monotone
submodular constraints that capture the structure of
the chance-constrained problem.

3. Literature Review
This paper is related to different streams of literature.
In the optimization literature, the problem of sched-
uling jobs on machines has been extensively studied,
and the bin-packing problem is a common formu-
lation. Hundreds of papers study the bin-packing
problem, including many of its variations, such as
2-D packing (e.g., Pisinger and Sigurd 2005), linear
packing, packing by weight or cost, etc. The basic
bin-packing problem is NP-hard, and Delorme et al.
(2016) provide a recent survey of exact approaches.
However, several simple online algorithms are often
used in practice for large-scale instances. A common
variation is the problem in which jobs arrive online
with sizes sampled independently from a known dis-
tribution with integer support and must be packed
onto machines upon arrival. The size of a job is known
when it arrives, and the goal is to minimize the number
of nonempty machines (or, equivalently, minimize the
total unused space or the waste). For this variation, the
sum-of-squares heuristic represents the state-of-the-art
approach. It is almost distribution-agnostic and nearly
universally optimal for most distributions by achieving
sublinear waste in the number of items seen (Csirik
et al. 2006). In Gupta and Radovanovic (2015), the
authors propose two algorithms based on gradient
descent on a suitably defined Lagrangian relaxation of
the bin-packing linear program that achieve additive
O(���

N
√)waste relative to the optimal policy (whereN is

the number of items). This line of works bounds the
expected waste for general classes of job size distri-
bution in an asymptotic sense.
Worst-case analysis of (deterministic) bin-packing

solutions has received a lot of attention as well. Sev-
eral efficient algorithms have been proposed that can
be applied online and admit approximation guarantees
in both online and off-line settings. The off-line version
of the problem can be solved using (1 + ε)OPT + 1 bins
in linear time (de La Vega and Lueker 1981).5 A number
of heuristics can solve large-scale instances efficiently
while guaranteeing a constant factor cost relative to
optimal. For a survey on approximation algorithms for
bin packing, see, for example, Coffman et al. (1996).
Three such widely used heuristics are first fit (FF),
next fit (NF), and best fit (BF) (see, e.g., Bays 1977,

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3260 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

Kenyon et al. 1996, and Keller et al. 2012). FF assigns the
newly arrived job to the first machine that can accom-
modate it and purchases a new machine only if none
of the existing ones can fit the new job. NF is similar to
FF but continues to assign jobs from the current machine
without going back to previous machines. BF uses
a similar strategy but seeks to fit the newly arrived job
to the machine with the smallest remaining capacity.
Although one can show that these heuristics provide
a two-approximation guarantee, improved factors were
also developed under special assumptions. Dósa and
Sgall (2013) provide a tight upper bound for the FF
strategy, showing that it never needsmore than 1.7OPT
machines. The off-line version of the problem also
received a lot of attention, and the best-fit-decreasing
(BFD) and first-fit-decreasing (FFD) strategies are among
the simplest (andmost popular) heuristics. They operate
like BF and FF but first rank all the jobs in decreasing
order of size. Dósa (2007) shows that the tight bound
of FFD is (11/9)OPT + 6/9.

Stochastic bin-packing models in which job dura-
tions are modeled as random variables are particularly
relevant to this paper. Coffman et al. (1980) study the
asymptotic and convergence properties of the NF
online algorithm. Lueker (1983) considers the case in
which job durations are drawn uniformly from in-
tervals of the form [a, b] and derive a lower bound on
the asymptotic expected number of bins. However,
unlike this type of asymptotic results in which jobs’
sizes are known when scheduling occurs, we are in-
terested in computing a solution that is feasible with
high probability before observing the actual sizes. Our
objective is to assign the jobs to as few machines as
possible such that the set of jobs assigned to each
machine satisfies the capacity constraint with some
given probability (say 99%). In other words, we solve
a stochastic optimization problem and analyze simple
heuristic solutions to achieve this goal. To make the
difference with the worst-case analysis clear, we note
that the worst-case analysis becomes a special case of
our problem when the objective probability threshold
is set to 100% (instead of any number strictly less than
one). The point of our paper is to exploit the stochastic
structure of the problem to reduce the scheduling costs
via overcommitment.

An additional common application of the bin-packing
problem is surgery planning (sometimes also called
operating room scheduling). In this application, the
surgery duration is assumed to be stochastic, and the
objective is to schedule the surgeries while minimizing
the total overtime cost (see, e.g., the survey papers by
Cardoen et al. 2010 and Deng et al. 2016). In this
paper, however, our objective is to minimize the
total number of machines instead of the total cost of
packing. Denton et al. (2010) consider the problem of
optimizing surgery allocation by minimizing the total

cost of opening a room plus the expected penalty cost
of overtime. The authors solve a two-stage stochastic
binary integer program based on finite samples of the
random surgery durations. In this context, Shylo
et al. (2012) was among the first to use chance con-
straints for restricting the overtime in surgery oper-
ating rooms. By assuming that the surgery durations
follow a multivariate Gaussian distribution, they refor-
mulate the chance-constrained model as an equivalent
semidefinite program based on convex analysis of
probabilistic constraints.
Finally, bin-packing models find an application in

bandwidth allocation for high-speed networks. For
example, Kleinberg et al. (2000) relate stochastic bin
packing to allocating bandwidth for bursty connections
in high-speed networks and propose approximation
algorithms for its online chance-constrained variant.
The authors also show that chance constraints in binary
knapsack problems are equivalent to those in bin
packing. The knapsack problem with chance con-
straints was also extensively studied in the literature
(see, e.g., Goyal and Ravi 2010 and Han et al. 2016).
A common way to solve the chance-constrained bin

packing problem is to apply the sample average ap-
proximation (SAA) approach to approximate the prob-
lem as a mixed integer linear program (see Luedtke et al.
(2010) and the references therein). In this approach, one
needs to know the full distributional information. The
recent work by Zhang et al. (2016) considers an off-line
algorithm to solve bin packing with chance constraints
when knowing only the first two moments. The authors
show that the problem can be reformulated as a 0–1
second-order cone program and derive extended poly-
matroid inequalities to strengthen the formulation. They
also demonstrate computationally that the branch-and-
cut algorithm with extended polymatroid inequalities
scales very well as the problem size grows. However, no
theoretical guarantee on the worst-case performance is
provided.
This paper is also related to the robust optimization

literature and especially to distributionally robust
optimization. In this context, the goal is to solve an
optimization problem in which the input parameter
distribution belongs to a family of distributions that
share some properties (e.g., all the distributions with
the samemean and covariance matrix) and consider the
worst-case within the given family (concrete examples
were presented in Section 2.3). Examples of such
studies include El Ghaoui et al. (2003), Bertsimas and
Popescu (2005), Calafiore and El Ghaoui (2006), and
Delage and Ye (2010). These papers aim to convert
linear or convex (continuous) optimization problems
with a chance constraint into tractable formulations.
Our paper shares a similar motivation but considers
an integer problem. To the best of our knowledge, this
paper is among the first to develop efficient algorithms

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3261

with constant approximation guarantees for the online
bin-packing problem with capacity chance constraints.

Large-scale cluster management in general is an
important area of computer systems research. Verma
et al. (2015) provide a full, modern example of a pro-
duction system. Much experimental studies seek to
evaluate the real-world performance of bin-packing
heuristics that also account for factors such as adverse
interactions between jobs and the presence of multiple
contended resources (see, for example, Lee et al. 2011
and Roytman et al. 2013). Although modeling these
aspects is likely to complement the resource savings
achieved with the stochastic model we propose, these
papers capture fundamentally different efficiency gains
arising from technological improvements and idiosyn-
cratic properties of certain types (or combinations) of
resources. In this paper, we limit our attention to the
benefit and practicality of machine overcommitment in
the case inwhich a single key resource is in short supply.

4. Results and Insights for Special Cases
In this section, we consider the (SMBP) for given µj, bj,
N, and D(α). Our goals are (i) to develop efficient
approaches to solve the problem, (ii) to draw some
insights on how to schedule the jobs, and (iii) to study
the effect of the different parameters on the outcome.
This will ultimately allows us to understand the impact
of overcommitment in resource allocation problems.

4.1. Identical Distributed Jobs
We consider the symmetric setting in which all Aj have
the same distribution, such that µj � µ and bj � b in
the (SMBP). By symmetry, we only need to find the
number of jobs n to assign to each machine. Because all
the jobs are interchangeable, our goal is to assign as
many jobs as possible in each machine. Thus, we want
to pick the largest value n that satisfies constraint (5):

D(α)2 ≤ [V − nµ]2
nb

.

For a given α, this is the largest integer smaller than

n(α) � V
µ
+ 1
2µ2

[
bD(α)2 −

�����������������������������
b2D(α)4 + 4bD(α)2Vµ

√]
. (6)

• For a given α, the number of jobs n(α) increases
with V/µ. Indeed, because µ represents the expected
job size, increasing the ratio V/µ is equivalent to in-
creasing the number of “average” jobs a machine can
host. If the jobs are smaller or the machines larger, one
can fit more jobs per machine as expected.

• For a givenV/µ, n(α) is a nonincreasing function of α.
When α increases, it means that we enforce the capacity
constraint in a stricter manner (recall that α � 1 corre-
sponds to the casewithout overcommitment). As a result,
the number of jobs per machine cannot increase.

• For given α and V/µ, n(α) is a nonincreasing
function of b. Recall that b corresponds to some mea-
sure of spread (the variance in the Gaussian setting and
the range for distributions with bounded support).
Therefore, when b increases, the jobs’ resource usage is
more volatile, and hence, a larger buffer is needed.
Consequently, the number of jobs cannot increase when
b grows.
• For given α and V, n(α) is nonincreasing in

��
b

√
/µ.

The quantity
��
b

√
/µ represents the coefficient of varia-

tion of the job size in the Gaussian case or a similarly
normalized measure of dispersion in other cases.
Consequently, one should be able to fit fewer jobs as the
variability increases.
The simple case of identically distributed jobs allows

us to understand how the different factors affect the
number of jobs that one can assign to each machine. In
Figure 1, we plot Equation (6) for an instance with
A � 1, A � 0.3, µ � 0.65, V � 30, and 0.5≤α< 1. The
large dot at α � 1 represents the case without over-
commitment. Interestingly, when the value of α ap-
proaches one, the benefit of allowing a small probability
of violating the capacity constraint is significant so that
one can increase the number of jobs per machine. In this
case, when α � 1, we can fit 30 jobs per machine, but
when α � 0.992, we can fit 36 jobs, hence, an improve-
ment of 20%. Note that this analysis guarantees that the
capacity constraint is satisfied with at least probability α.
As we show in Section 7 for many instances, the capacity
constraint is satisfied with an even higher probability. Al-
ternatively, one can plot α as a function of n (see Figure 2a
for an example with different values for V/µ) or n as
a function of

��
b

√
/a for different values of α (see Figure 2b).

As expected, the benefit of overcommitting in-
creases with V/µ. In our example, when V/µ � 25, by

Figure 1. (Color online) Parameters:A � 1, A � 0.3,
µ � 0.65, V � 30

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3262 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

scheduling jobs according to A (i.e., no overcommitment),
we can schedule 14 jobs, but if we allow a 0.1% violation
probability, we can schedule 17 jobs. Consequently, by
allowing 0.1% chance of violating the capacity constraint,
one can save more than 20% in costs. Next, we discuss
the case with a small number of different classes of job
distributions.

4.2. Small Number of Job Distributions
We now consider the case in which the random vari-
ablesAj can be clustered in few different categories. For
instance, suppose standard clustering algorithms are
applied to historical data to treat similar jobs as a single
class with a usage distribution. A concrete example is
a setting with four types of jobs: (i) large jobs with no
variability (µj is large and bj � 0), (ii) small jobs with no
variability (µj is small and bj � 0), (iii) large jobs with

high variability (both µj and bj are large), and (iv) small
jobs with high variability (µj is small and bj is large). In
other words, we have N jobs, and they all are from one
of the four types with given µj and bj. The result for
this setting is summarized in the following observation
(the details can be found in Online Appendix C).

Observation 1. In the case in which the number of
different job classes is not too large, one can solve the
problem efficiently as a cutting-stock problem.

The resulting cutting-stock problem (see formula-
tion (12) in Online Appendix C) is well studied in
many contexts (see Gilmore and Gomory 1961 for a
classical approach based on linear programming or the
recent survey of Delorme et al. 2016). For example, one
can solve the LP relaxation of (12) and round the frac-
tional solution. This approach can be very useful for cases
in which the cloud provider has enough historical data
and when the jobs can all be grouped in a small number
of different clusters. However, grouping all customer job
profiles into a small number of classes, each described by
a single distribution, is often unrealistic. For example,
virtualmachines are typically soldwith 1, 2, 4, 8, 16, 32, or
64 CPU cores, each with various memory configurations,
to a variety of customers with disparate use-cases (dif-
ferent usage means and variability). Unfortunately, if one
decides to use a large number of job classes, solving
a cutting-stock problem is not scalable. In addition, this
approach requires advance knowledge of the number of
jobs in each class and, hence, cannot be applied in an
online fashion.

5. Online Constant Competitive Algorithms
In this section, we analyze the performance of a large
class of algorithms for the online version of (SMBP). We
note that the same guarantees hold for the off-line case as
it is just a simpler version of the problem. We also
present a refined result for the off-line problem in
Section 6.1.

5.1. Lazy Algorithms Are 8
3 -Competitive

An algorithm is called lazy if it does not purchase a new
machine unless necessary.

Definition 1. We call an online algorithm lazy if, upon
arrival of a new job, it assigns the job to one of the
existing (already purchased) machines given the ca-
pacity constraints are not violated. In other words, the
algorithm purchases a new machine if and only if none
of the existing machines can accommodate the newly
arrived job.

Several commonly used algorithms fall into this
category, for example, first fit and best fit. Let OPT be
the optimal objective, that is, the minimum number
of machines needed to serve all the jobs {1, 2,⋯,N}.

Figure 2. (Color online) Example for Identically Distributed
Jobs

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3263

Recall that each job 1≤ j≤N has two characteristics: µj
and bj, which represent the mean and the uncertain part
of job j, respectively. For a set of jobs S, we define the
corresponding cost Cost(S) to be

∑
j∈Sµj +

��������∑
j∈Sbj

√
.

Without loss of generality, we can assume (by nor-
malization of all µj and bj) that the capacity of each
machine is 1 and that D(α) is also normalized to one.
We call a set S feasible if its cost is at most 1. In the
following theorem, we show that any lazy algo-
rithm yields a constant approximation for the (SMBP)
problem.

Theorem 2. Any lazy algorithm ALG purchases at most
8
3OPT machines, where OPT is the optimum number of
machines to serve all jobs.

The proof can be found in Online Appendix D.
Theorem 2 derives an approximation guarantee of 8/3
for any lazy algorithm. In many practical settings, one
can further exploit the structure of the set of jobs and
design algorithms that achieve better approximation
factors. For example, if some jobs are usually larger
relative to others, one can incorporate this knowledge
into the algorithm. We next describe the main in-
tuitions behind the 8/3 upper bound. In the proof of
Theorem 2, we have used the following two main
proof techniques:

• First, we show a direct connection between the
feasibility of a set S and the sum

∑
j∈S(µj + bj). In par-

ticular, we prove that
∑

j∈S(µj + bj)≤ 1 for any feasible
set and greater than 3/4 for any infeasible set. Con-
sequently, OPT cannot be less than the sum of µj + bj
for all jobs. The gap of 4/3 between the two bounds
contributes partially to the final upper bound of 8/3.

• Second, we show that the union of jobs assigned to
any pair of machines by a lazy algorithm is an in-
feasible set so that their sum of µj + bj should exceed
3/4. One can then find m/2 disjoint pairs of machines
and obtain a lower bound of 3/4 for the sum µj + bj for
each pair. The fact that we achieve this lower bound for
every pair of machines (and not for each machine)
contributes another factor of 2 to the approximation
factor, resulting in 4

3× 2 � 8
3.

Note that the second loss of a factor of 2 follows from
the fact that the union of any two machines forms an
infeasible set and nothing stronger. In particular, all
machines could potentially have a cost of 1/2 + ε for
a very small ε and make the preceeding analysis tight.
Nevertheless, if we assume that each machine is nearly
full (i.e., has Cost close to 1), we can refine the ap-
proximation factor.

Theorem 3. For any 0≤ ε≤ 0.3, if the lazy algorithm ALG
assigns all the jobs to m machines such that Cost(Si)≥ 1− ε
for every 1≤ i≤m, we have m≤ (43 + 3ε)OPT, that is,
a (43 + 3ε) approximation guarantee.

Proof. To simplify the analysis, we denote β to be 1− ε.
For a set Si, we define x � ∑

j∈Siµj and y � ���������∑
j∈Sibj

√
.

Because Cost(Si) is at least β, we have x + y≥ β. As-
suming x≤ β, we have

∑

j∈Si
(µj + bj) � x + y2 ≥ x + (β− x)2

� x−
2β− 1
2

()2
+ β−

1
4
≥ β−

1
4
� 3
4
− ε,

where the first equality is by the definition of x
and y, the first inequality holds by x + y≥ β, and
the rest are algebraic manipulations. For x> β,
we also have

∑
j∈Si(µj + bj)≥ x> β> 3

4− ε. We conclude
that

∑N
j�1(µj + bj)≥m× (34− ε). We also know that

OPT≥∑N
j�1(µj + bj), which implies that m≤ OPT

3/4− ε ≤
OPT(43 + 3ε), where the last inequality holds for
ε≤ 0.3. □

A particular setting in which the condition of
Theorem 3 holds is when the capacity of each machine
is large compared with all jobs, that is, max1≤j≤N µj +���
bj

√
is at most ε. In this case, for each machine i≠m

(except the last purchased machine), we know that
there exists a job j∈ Sm (assigned to the last purchased
machine m) such that the algorithm could not assign j
to machine i. This means that Cost(Si ∪ {j}) exceeds
one. Because Cost is a subadditive function, we have
Cost(Si ∪ { j})≤Cost(Si) + Cost({j}). We also know that
Cost({ j})≤ ε, which implies that Cost(Si)> 1− ε.

Remark 1. As discussed, there are two main sources for
losses in the approximation factor: nonlinearity of the
cost function,which contributes up to 4/3, andmachines
being only partially full, which induces an extra factor
of 2, implying the 8/3 approximation guarantee. In the
classical bin-packing case (i.e., bj � 0 for all j), the cost
function is linear, and the nonlinearity losses in the
approximation factor fade. Consequently, we obtain
that (i) Theorem 2 reduces to a two-approximation fac-
tor and (ii) Theorem 3 reduces to a (1 + ε)-approxi-
mation factor, which are both consistent with known
results from the literature on the classical bin-packing
problem.

Theorem 3 improves the bound for the case in which
each machine is almost full. However, in practice,
machines are often not full. We next derive a bound as
a function of the minimum number of jobs assigned to
the machines.

5.2. Algorithm FIRST–FIT is 9
4 -Competitive

So far, we considered the general class of lazy algo-
rithms. One popular algorithm in this class (both in the
literature and in practice) is FIRST–FIT. By exploiting the
structural properties of allocations made by FIRST–FIT,
we can provide a better competitive ratio of 94<

8
3. Recall

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3264 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

that, upon the arrival of a new job, FIRST–FIT purchases
a new machine if the job does not fit in any of the
existing machines. Otherwise, it assigns the job to the
first machine (based on a fixed ordering, such as
machine IDs) that it fits in. This algorithm is simple to
implement and very well studied in the bin-packing
context. First, we present an extension of Theorem 2
for the case in which each machine has at least K jobs.

Corollary 1. If the FIRST–FIT algorithm assigns jobs such
that each machine hosts at least K jobs, the number of
purchased machines does not exceed 4

3 (1 + 1
K)OPT, where

OPT is the optimum number of machines to serve all jobs.

One can prove Corollary 1 in a similar fashion as the
proof of Theorem 2 and using the fact that jobs are
assigned using FIRST–FIT (the details are omitted for
conciseness). For example, when K � 2 (resp. K � 5),
we obtain a two (resp. 1.6) approximation. We next
refine the approximation factor for the problem by
using the FIRST–FIT algorithm.

Theorem 4. The number of purchased machines by
FIRST–FIT for any arrival order of jobs is no more than
9
4OPT + 1.

The proof can be found in Online Appendix E. We
note that the approximation guarantees developed in
this section do not depend on the factorD(α) and on the
specific definition of the parameters µj and bj. In ad-
dition, as we show computationally in Section 7, the
performance of this class of algorithms is not signifi-
cantly affected by D(α).

5.3. Insights on Job Scheduling
We next show that ensuring the following two
guidelines in any allocation yields optimal solutions:

• Filling up eachmachine completely so that no other
job fits in, that is, making eachmachine’sCost equal to 1.

• Eachmachine contains a set of similar jobs (defined
formally next).

We formalize these properties in more detail and
show how one can achieve optimality by satisfying
these two conditions. We call a machine full if

∑
j∈Sµj +��������∑

j∈Sbj
√

is equal to 1 (recall that the machine capacity is
normalized to one without loss of generality), where S
is the set of jobs assigned to the machine. Note that it is
not possible to assign any additional job (no matter
how small the job is) to a full machine. Similarly, we call
a machine ε-full if the cost is at least 1− ε, that is,
∑

j∈Sµj+
��������∑

j∈Sbj
√ ≥ 1− ε. We define two jobs to be similar

if they have the same b/µ ratio. Note that similar jobs
can have different values of µ and b. We say that
a machine is homogeneous if it only contains similar jobs.
In other words, if the ratio bj/µj is the same for all
the jobs j assigned to this machine. By convention,
we define bj/µj to be +∞ when µj � 0. In addition,

we introduce the relaxed version of this property:we say
that two jobs are δ-similar if their b/µ ratios differ by at
most a multiplicative factor of 1 + δ. A machine is
called δ-homogeneous if it only contains δ-similar jobs
(i.e., for any pair of jobs j and j′ in the same machine,
bj/µj

b′j /µ′
j
is at most 1 + δ).

Theorem 5. For any ε≥ 0 and δ≥ 0, consider an assign-
ment of all jobs to some machines with two properties:
(i) each machine is ε-full and (ii) each machine is δ-homoge-
neous. Then, the number of purchased machines in this
allocation is at most OPT

(1− ε)2(1− δ).

The proof can be found in Online Appendix F. In
summary, we proposed an easy-to-follow recipe to
schedule jobs on machines. Each arriving job is char-
acterized by two parameters µj and bj. Upon arrival of
a new job, the cloud provider can compute the ratio
rj � bj/µj. Then one can decide on a few “buckets” for
the different values of rj, depending on historical data
and performance restrictions. Finally, the cloud pro-
vider will assign jobs with similar ratios to the same
machines while trying to fill in machines as much as
possible. If one manages to make all the machines ε-full
while packing similar jobs in each machine (i.e., δ
homogeneous), the result of Theorem 5 suggests that
such a strategy will yield a good performance in terms
of minimizing the number of machines.

6. Extensions
In this section, we present two extensions of the
problem considered in this paper.

6.1. Off-Line 2-Approximation Algorithm
Consider the off-line version of the (SMBP). In this case,
all the N jobs already arrived, and one has to find
a feasible schedule so as to minimize the number of
machines. We propose the algorithm LOCAL–SEARCH

that iteratively reduces the number of purchased ma-
chines and uses ideas inspired from FIRST–FIT to achieve
a two-approximation for the offline problem. Algo-
rithm LOCAL–SEARCH starts by assigning all the jobs to
machines arbitrarily and then iteratively refines this
assignment. Suppose that each machine has a unique
identifier number. We next introduce some notation
before presenting the update operations. Let a be the
number of machines with only one job, A1 be the set of
these a machines, and S1 be the set of jobs assigned to
these machines. Note that this set changes throughout
the algorithm with the update operations. We say that
a job j∉ S1 is good if it fits in at least 6 of the machines in
the set A1.6 In addition, we say that a machine is large if
it contains at least 5 jobs, and denote the set of large
machines by A5. We say that a machine ismedium size if
it contains 2, 3, or 4 jobs and denote the set of medium
machines by A2,3,4. We call a medium-size machine

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3265

critical if it contains (exactly) one job that fits in none of
the machines in A1 and the rest of the jobs in this
machine are all good.We present the update operations
of LOCAL–SEARCH in Algorithm 1.

Algorithm 1. LOCAL–SEARCH

Input: All the N jobs already arrived.
Procedure
1. Find a job j in machine i (i is the machine identifier

number) and assign it to some other machine i′ < i if
feasible (the outcome will be similar to FIRST–FIT).

2. Find a medium-size machine i that contains one
job j1 that fits in at least one machine in A1 and the rest
of the jobs in i are all good. Let j2,⋯, jℓ (2≤ ℓ≤ 4) be the
other jobs inmachine i. First, assign j1 to onemachine in
A1 that it fits in. If there are multiple such machines,
select one of them arbitrarily. Then, assign j2 to a dif-
ferent machine in A1 that it fits in. There should be at
least 5 ways to do so because j2 is a good job. We
continue this process until all the jobs in machine i
(there are at most 4 of them) are assigned to distinct
machines in A1 and they all fit in their new machines.
This way, we release machine i and reduce the number
of purchased machines by one.

3. Find two critical machines i1 and i2. Let j1 and j2 be
the only jobs in these two machines that fit in no
machine in A1. If both jobs fit and form a feasible as-
signment in a new machine, we purchase a new ma-
chine and assign j1 and j2 to it. Otherwise, we do not
change anything and ignore this update step. There are
at most 3× 2 � 6 other jobs in these two machines
because both are medium machines. In addition, the
rest of the jobs are all good. Therefore, similar to the
previous case, we can assign these jobs to six distinct
machines in A1. Note that any number less than 6 in
the definition of good jobs will not suffice for this part
of the algorithm to hold. This way, we release ma-
chines i1 and i2 and purchase a new machine. So, in
total, we reduce the number of purchased machines
by one.

Before presenting the performance result of
LOCAL–SEARCH, we first motivate our choice of splitting
the machines into small, medium, and large machines.
According to our proof (see Online Appendix G), if
there are only small machines, the LOCAL–SEARCH al-
gorithm is optimal. Indeed, it becomes clear that the first
iteration of the LOCAL–SEARCH algorithm ensures that if
two jobs fit in one machine, they will be merged. On the
other hand, if there are no small machines, we can
show that the algorithm yields a two-approximation
using the same argument as we used before (see
Corollary 1, whenK � 2). Consequently, we remainwith
the case in which we have a mixture of small and
nonsmall machines. In this case, the argument presented
in our proof yields a guarantee that is worse than two.
Therefore, we need to find a way to compensate for

this gap and improve the total approximation guar-
antee to 2. This is the main motivation of introducing
medium and large machines. By using our proof
technique, if we only have large machines, one can
show an approximation factor of 8/5, which is indeed
strictly better than 2. We then exploit this improve-
ment with respect to 2 to compensate for the deficit we
have obtained from the mixed case of small and
nonsmall machines. We are now ready to analyze this
LOCAL–SEARCH algorithm that also borrows ideas from
FIRST–FIT. We next show that the number of purchased
machines is at most 2OPT +O(1), that is, a two-
approximation.

Theorem 6. Algorithm LOCAL–SEARCH terminates after at
most N3 operations (where N is the number of jobs) and
purchases at most 2OPT + 11 machines.

The proof can be found in Online Appendix G. We
conclude this section by comparing our results to the
classical (deterministic) bin-packing problem. In clas-
sical bin packing, there are folklore polynomial time
approximation schemes (see section 10.3 in Albers
and Souza 2011) that achieve a (1− ε)-approximation
factor by proposing an offline algorithm based on
clustering the jobs into 1/ε2 groups and treating them
as equal-size jobs. Using dynamic programming tech-
niques, one can solve the simplified problem with 1/ε2

different job sizes in timeO(npoly(1/ε)). In addition to the
inefficient time complexity that makes such algorithms
less appealing for practical purposes, one cannot gener-
alize the same ideas to our setting. The main obstacle
is the lack of total ordering among the different jobs.
In classical bin packing, the jobs can be sorted based
on their sizes. However, this is not true in our case
because the jobs have two dimensional requirements
(µj and bj).

6.2. Alternative Constraints
Recall that in the (SMBP), we used themodified capacity
constraint (5). Instead, one can consider the following
family of constraints, parametrized by 0.5≤ p≤ 1:

∑N

j�1
µjxij +D(α)

∑N

j�1
bjxij

()p
≤Vyi .

For conciseness, the results of this case can be found in
Online Appendix H.

7. Computational Experiments
In this section, we test and validate our results by
solving the (SMBP) and by examining the impact on the
number of purchased machines. We use realistic
workload data inspired by Google Compute Engine
and show how our model and algorithms can be ap-
plied in an operational setting.

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3266 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

7.1. Setting and Data
We use simulated workloads of 1,000 jobs (virtual
machines) using a realistic VM size distribution (see
Table 1). Typically, the GCE workload is composed of
a mix of VM sizes from virtual machines belonging to
cloud customers. These jobs can have highly varying
workloads, including some large ones and many
smaller ones.7 We assume that each VM arrives to the
cloud provider with a requested size (i.e., number of
CPU cores), sampled from the distribution in Table 1.

In this context, the average utilization is typically
low, but in many cases, the utilization can be highly
variable over time. Although we decided to keep
a similarVMsize distribution as observed in a production
data center, we also fitted parametric distributions to
match themean and variance of themeasured usage. This
allowsus to obtain a parametricmodel thatwe could vary
for simulation. We consider two different cases for the
actual utilization as a fraction of the requested job size:
either a Bernoulli (binary) distribution or a truncated
Gaussian. As discussed in Section 2.3, we assume that
each job j has lower and upper utilization bounds,A j and
Aj. We sample A j uniformly in [0.3, 0.6], and Aj in the
range [0.7, 1.0]. In addition, we uniformly sample µ′

j and
σ′j ∈ [0.1, 0.5] for each VM to serve as the parameters of
the truncated Gaussian (not to be confused with its true
mean and standard deviation, µj and σj). For the Ber-
noulli (binary) case, µ′

j � µj determines the probabilities
of the realization corresponding to the lower and upper
bounds.

For each workload of 1,000 VMs generated in this
manner, we solve the online version of the (SMBP) by
implementing the best-fit heuristic, using one of the
three different variants for D(α) and bj. We solve the
problem for various values of α ranging from 0.5 to
0.99999. More precisely, when a new job arrives, we
compute the modified capacity constraint in Equation (5)
for each already purchased machine and assign the job
to the machine with the smallest available capacity that
can accommodate it.8 If the job does not fit in any of
the already purchased machines, the algorithm opens
a new machine. We consider the three variations of the
(SMBP) discussed earlier:

• The Gaussian case introduced in (2) with bj � σ2j
and D(α) � Φ−1(α). This is now also an approximation
to the (BPCC) because the true distributions are trun-
cated Gaussian or Bernoulli.

• TheHoeffding’s inequality approximation introduced
in (3) with bj � (Aj −A j)

2
and D(α) � �������������������

− 0.5 ln(1−α)√
.

This is equivalent to the distributionally robust approach
with the family of distributions $2.
• The distributionally robust approximation with

the family of distributions $1 with bj � σ2j and
D1(α) �

������������
α/(1−α)√

.

7.2. Linear Benchmarks
We also implement the following four benchmarks,
which consist of solving the classical (DBP) problem.
First, we have
• No overcommitment: This is equivalent to setting

α � 1 in the (SMBP) or solving the (DBP) with sizes Aj.
Three other heuristics are obtained by replacing the

square-root term in constraint (5) by a linear term;
specifically, we replace the constraint with

∑N

j�1
µjxij +D(α)

∑N

j�1

������
bjxij

√
�
∑N

j�1
µj +D(α)

���
bj

√()
xij ≤Vyi,

(7)

where the equality follows from the fact that the var-
iables xij are binary so that ���xij√ � xij, and hence,
we have

∑N
j�1

������
bjxij

√ � ∑N
j�1

���
bj

√
xij. Equation (7) allows us

to obtain
• The linear Gaussian heuristic that mimics the

Gaussian approximation in (2).
• The linear Hoeffding’s heuristic that mimics the

Hoeffding’s approximation in (3).
• The linear robust heuristic that mimics the dis-

tributionally robust approach with $1.
Note that the linearized constraint (7) is more re-

strictive for a fixed value of α (by concavity of the
square root), but we naturally vary the value of α in our
experiments. We do not expect these benchmarks to
outperform our proposed method because they do not
capture the risk-pooling effect from scheduling jobs on
the samemachine. They do, however, still reflect different
relative amounts of “buffer” beyond the expected utili-
zation of each job because of the usage uncertainty.
The motivation behind the linear benchmarks lies in the

fact that the problem is reduced to the standard (DBP)
formulation, which admits efficient implementations for
many heuristics. For example, the best-fit algorithm can
run in time O(N logN) by maintaining a list of open
machines sorted by the slack left on each machine (see
Johnson 1974 for more details). In contrast, our best-fit
implementation with the nonlinear constraint (5) takes
time O(N2) because we evaluate the constraint for each
machine when each new job arrives. Practically, in cloud
VM scheduling systems, this quadratic-time approach
may be preferred anyway because it generalizes to more
complex “scoring” functions that also take into account
additional factors besides the remaining capacity, such
as multiple resource dimensions and correlation be-
tween jobs (see, e.g., Verma et al. 2015). In addition, the

Table 1. Example Distribution of VM Sizes (Number of
CPU Cores) in a Google Data Center

Number of cores 1 2 4 8 16 32

% VMs 36.3 13.8 21.3 23.1 3.5 1.9

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3267

computational cost could be mitigated by dividing the
data center into smaller “shards,” each consisting of
a fraction of the machines, and then trying to assign each
incoming job only to the machines in one shard. For ex-
ample, in our experiments we found that there was little
performance advantage in considering sets of more than
1,000 jobs at a time.Nevertheless, our results show that even
the linear benchmarks may provide substantial savings
(relative to the no-overcommitment policy) while only
requiring minor changes relative to classical algorithms: in-
stead ofAj, we simply use job sizes defined by µj, bj, and α.

7.3. Results and Comparisons
We compare the seven different methods in terms of
the number of purchased machines and show that, in
most cases, our approach significantly reduces the
number of machines needed. We consider two physical
machine sizes: 32 and 72 cores. As expected, larger
machines achieve a greater benefit from the risk pooling.
We draw 50 independent workloads, each composed of
1,000 VMs. For each workload, we schedule the jobs
using best fit and report the average number of ma-
chines needed across the 50 workloads. Finally, we
compute the probability of capacity violation as follows.
For each machine used to schedule each of the work-
loads, we draw 5,000 utilization realizations (either from
a sum of truncated Gaussian or a sum of Bernoulli
distributions), and we count the number of realizations
in which the total usage on a machine exceeds capacity.

The sample size was chosen so that our results
reflect an effect that is measurable in a typical data
center. Because our workloads require on the order
of 100 machines each, this corresponds to roughly

50× 100× 5, 000 � 25, 000, 000 individual machine-
level samples. Seen another way, we schedule
50× 1,000 � 50, 000 jobs and collect 5,000 data points
from each. Assuming a sample is recorded every
10 minutes, this corresponds to a few days of traffic even
in a small data center with less than 1,000 machines.9 The
sample turns out to yield very stable measurements,
and defining appropriate service level indicators is
application-dependent and beyond the scope of this
paper, so we do not report confidence intervals or
otherwise delve into statistical measurement issues.
In Figure 3, we plot the average number of machines

needed as a function of the probability that a constraint is
violated, in the case inwhich the data center is composed
of 72 CPU core machines. Each point in the curves
corresponds to a different value of the parameter α.
Without overcommitment, we need an average of more
than 54machines to serve all the jobs. By allowing a small
chance of violation, say a 0.1% risk (or, equivalently,
a 99.9% satisfaction probability), we only need 52 ma-
chines for the Bernoulli usage and 48 machines for the
truncated Gaussian usage. If we allow a 1% chance of
violation, we then only need 50 and 46 machines, re-
spectively. The table of Figure 4 summarizes the relative
savings, which amount to 4.5% and 11.5% with a 0.1%
risk and to 8% and 14% with a 1% risk for the Bernoulli
and truncated Gaussian usages, respectively.
Figure 3 shows that all three variations (Gaussian,

Hoeffding’s, and the distributionally robust) yield very
similar results. This suggests that the results are robust
to the method and the parameters. The same is true
for the linear benchmarks although they perform
worse as expected. We remark that although the final

Figure 3. (Color online) Average Number of 72-Core Machines Needed to Schedule a Workload vs. the Probability that Any
Given Machine’s Realized Load Exceeds Capacity

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3268 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

performance trade-off is nearly identical, for a partic-
ular value of α, the achieved violation probabilities vary
greatly. For example, with α � 0.9 and the truncated
normal distribution, each constraint was satisfied with
probability 0.913 when using the Gaussian approxi-
mation but with much higher probabilities (0.9972 and
0.9998) for the Hoeffding and robust approximations.
This is expected because the latter two are relatively
loose upper bounds for a truncated normal distribution
whereas the distributions N(µj,σj) are close approxi-
mations to the truncated Gaussian with parameters µ′

j
and σ′j . Practically, the normal approximation is likely
to be the easiest to calibrate in cases in which the
theoretical guarantees of the other two approaches are
not needed because it would be nearly exact for nor-
mally distributed usages.

We repeat the same tests for smaller machines with
32 CPU cores in Figure 5 (see Online Appendix I). The
smaller machines are more difficult to overcommit
because there is a smaller risk-pooling opportunity as
can be seen by comparing the columns of Table 4. The
three variations of our approach still yield similar and
significant savings but now they substantially out-
perform the linear benchmarks: the cost reduction is at
least double with all but the largest values of α. We
highlight that, with the “better behaved” truncated
Gaussian usage, we still obtain a 5% cost savings at
a 0.01% risk whereas the linear benchmarks barely
improve the no-overcommitment case.

Asmentioned in Section 2.2, the value of α should be
calibrated so as to yield an acceptable risk level given
the data center, the workload, and the resource in
question. Any data center has a baseline risk resulting
from machine (or power) failure, and a temporary
CPU shortage is usually much less severe relative to
such a failure. On the other hand, causing a VM to
crash because of a memory shortage can be as bad as
a machine failure from the customer’s point of view.
Ultimately, the risk tolerance will be driven by techno-
logical factors, such as the ability to migrate VMs or
swap memory while maintaining an acceptable
performance.

7.4. Impact
We conclude that our approach allows a substantial
cost reduction for realistic workloads. More precisely,
we draw the following four conclusions.
• Easy to implement: Our approach is nearly as

simple to implement as classical bin-packing heuris-
tics. In addition, it works online and in real time and
can be easily incorporated into existing scheduling
algorithms.
• Robustness: The three variations we proposed

yield very similar results. This suggests that our ap-
proach is robust to the type of approximation. In
particular, the uncertain term bj and the risk coefficient
D(α) do not have a strong impact on the results. It also
suggests that the method is robust to estimation errors
in the measures of variability that define bj.
• Significant cost reduction: With modern 72-core

machines, our approach allows an 8%–14% cost sav-
ings relative to the no-overcommitment policy. This is
achieved by considering a manageable risk level of 1%,
which is comparable to other sources of risk that are not
controllable (e.g., physical failures and regular main-
tenance operations).
• Outperforming the benchmarks: Our proposals

show a consistent improvement over three different
linear benchmarks that reduce to directly apply the
classical best-fit heuristic. The difference is more sub-
stantial in cases with smaller machines, which is in-
tuitively more challenging.

8. Conclusion
In this paper, we formulated and developed a practical
solution for bin packing with overcommitment. In par-
ticular,we focused on a cloud computingproviderwho is
willing to overcommitwhen allocating capacity to virtual
machines in a data center. We modeled the problem as
bin packing with chance constraints, where the objective
is to minimize the number of purchased machines while
satisfying the capacity constraints of each machine with
a high probability. We first showed that this problem is
closely related to an alternative formulation that we call
the SMBP (submodular bin packing). Specifically, the two
problems are equivalent under independent Gaussian job
sizes or when the job size distribution belongs to the
distributionally robust family with a given mean and
(diagonal) covariance matrix. In addition, bin packing
with chance constraints can be approximated by the
SMBP for distributions with bounded support.
We first showed that for the bin-packing problem

with general monotone submodular capacity constraints,
it is impossible to find a solution within any reasonable
factor fromoptimal.We thendeveloped simple algorithms
that achieve solutions within constant factors from
optimal for the SMBP problem. We showed that any
lazy algorithm is 8/3 competitive and that the first-fit
heuristic is 9/4 competitive. Because the first-fit and

Figure 4. Percentage Savings Resulting from
Overcommitment for Two CPU Usage Distributions, Using
the Three Proposed Variants of the Chance Constraint

Note. The linear Gaussian benchmark is shown for comparison.

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3269

best-fit algorithms are easy to implement and well un-
derstood in practice, this provides an attractive option
from an implementation perspective. Second, we
proposed an algorithm for the off-line version of
the problem and showed that it guarantees a two-
approximation. Then, we used our model and algo-
rithms to draw several insights on how to schedule jobs
to machines and on the right way to overcommit. We
convey that our method captures the risk-pooling effect
as the “safety buffer” needed for each job decreases
with the number of jobs already assigned to the same
machine. Moreover, our approach translates to a trans-
parent and meaningful recipe on how to assign jobs to
machines by clustering similar jobs in terms of sta-
tistical information (i.e., jobs with similar b/µ should
be assigned to the same machine).

Finally,wedemonstrated the benefit of overcommitting
and applied our approach to realistic workload data
inspired by Google Compute Engine. We showed that
our methods are (i) easy to implement, (ii) robust to
the parameters, and (iii) significantly reduce the cost
(1.5%–17% depending on the setting and the size of the
physical machines in the data center).

Acknowledgments
The authors thank the Google Cloud Analytics team for
helpful discussions and feedback. The first author thanks
Google Research as this work would not have been possible
without a one-year postdoc at GoogleNYC in 2015–2016. This
work was completed when the second author was working at
Google. The authors also thank Lennart Baardman, Arthur
Flajolet, and Balasubramanian Sivan for valuable feedback
that helped improve the paper.

Endnotes
1Although there is a job duration in cloud computing, it is generally
very large (especially for transactional workload) and, hence, less
constrained than the resource usage from the customer’s perspective.
The duration is also less important than the resource usage because
most virtual machines tend to be long-lived, cannot be delayed or
preempted, and are paid for by the minute.
2 Insofar as many vector bin-packing heuristics are actually straight-
forward generalizations of the first-fit and best-fit rules, it becomes
obvious how one can adapt our algorithms to themultiresource setting
(see Section 5).
3A submodular function is a set function for which the difference in the
incremental value made by adding a single element to an input set
decreases as the size of the input set increases. Formally, a function
f : 2Ω →R is submodular if for every X,Y⊆Ω, with X⊆Y and every
x∈Ω∖Y, we have f (X∪ {x})− f (X)≥ f (Y∪ {x})− f (Y).
4Radial distributions include all probability densities whose level sets
are ellipsoids. The formal mathematical definition can be found in
Calafiore and El Ghaoui (2006).
5This algorithm is linear in the number of items. The exact complexity
is Cε + Cnlog(1/ε), where Cε depends only on ε and C is an absolute
constant.
6The reason we need six jobs is technical andwill be used in the proof
of Theorem 6. In particular, one of the update operations does not
hold if this number is smaller than six as we explain.

7The average distribution of workloads we present in Table 1 as-
sumes small percentages of workloads with 32 and 16 cores and
larger percentages of smaller VMs. Theworkload distributionswe are
using are representative for some segments of GCE. Unfortunately,
we cannot unveil the real data because of confidentiality.
8Note that we clip the value of the constraint at the effective upper
bound (∑jxijAj) to ensure that no trivially feasible assignments are
excluded. Otherwise, the Hoeffding’s inequality-based constraint
may perform slightly worse relative to the policy without over-
commitment if it leaves too much free space on the machines.
9The exact time needed to collect a comparable data set from
a production system depends on the data center size and on the
sampling rate, which is a function of how quickly jobs enter and leave
the system and of how volatile their usages are. By sampling in-
dependently in our simulations, we are assuming that the mea-
surements from each machine are collected relatively infrequently (to
limit correlation between successive measurements) and that the
workloads are diverse (to limit correlation between measurements
from different machines). This assumption is increasingly realistic as
the size of the data center and the length of time covered increase.

References
Abdelaziz FB, Aouni B, El Fayedh R (2007)Multi-objective stochastic

programming for portfolio selection. Eur. J. Oper. Res. 177(3):
1811–1823.

Albers S, Souza A (2011) Combinatorial algorithms lecture notes: Bin
packing. Accessed August 1, 2017, https://www2.informatik.hu
-berlin.de/alcox/lehre/lvws1011/coalg/bin_packing.pdf.

Atamtürk A, Narayanan V (2008) Polymatroids and mean-risk mini-
mization in discrete optimization. Oper. Res. Lett. 36(5):618–622.

Bays C (1977) A comparison of next-fit, first-fit, and best-fit. Comm.
ACM 20(3):191–192.

Bertsimas D, Popescu I (2005) Optimal inequalities in probability
theory: A convex optimization approach. SIAM J. Optim. 15(3):
780–804.

Calafiore GC, El Ghaoui L (2006) On distributionally robust chance-
constrained linear programs. J. Optim. Theory Appl. 130(1):1–22.

Cardoen B, Demeulemeester E, Beliën J (2010) Operating room
planning and scheduling: A literature review. Eur. J. Oper. Res.
201(3):921–932.

Charnes A, Cooper WW (1963) Deterministic equivalents for
optimizing and satisfying under chance constraints. Oper. Res.
11(1):18–39.

Coffman EG Jr, Garey MR, Johnson DS (1996) Approximation al-
gorithms for bin packing: A survey.Approximation Algorithms for
NP-Hard Problems (PWS Publishing Co., Boston), 46–93.

Coffman EG Jr, So K, Hofri M, Yao A (1980) A stochastic model of
bin-packing. Inform. Control 44(2):105–115.

Csirik J, Johnson DS, Kenyon C, Orlin JB, Shor PW, Weber RR
(2006) On the sum-of-squares algorithm for bin packing. J. ACM
53(1):1–65.

Delage E, Ye Y (2010) Distributionally robust optimization under
moment uncertainty with application to data-driven problems.
Oper. Res. 58(3):595–612.

de La Vega WF, Lueker GS (1981) Bin packing can be solved within
1+ ε in linear time. Combinatorica 1(4):349–355.

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock
problems: Mathematical models and exact algorithms. Eur. J.
Oper. Res. 255(1):1–20.

Deng Y, Shen S, Denton B (2016) Chance-constrained surgery
planning under conditions of limited and ambiguous data.
Working paper, University of Michigan, Ann Arbor.

Denton BT, Miller AJ, Balasubramanian HJ, Huschka TR (2010)
Optimal allocation of surgery blocks to operating rooms under
uncertainty. Oper. Res. 58(4, part 1):802–816.

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
3270 Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS

https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/bin_packing.pdf
https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/bin_packing.pdf

Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud
computing: Architecture, applications, and approaches.Wireless
Comm. Mobile Comput. 13(18):1587–1611.

Dósa G (2007) The tight bound of first fit decreasing bin-packing
algorithm is ffd≤ 11/9opt + 6/9. Combinatorics, Algorithms, Pro-
babilistic and Experimental Methodologies (Springer, Berlin), 1–11.

Dósa G, Sgall J (2013) First fit bin packing: A tight analysis. Portier N,
Wilke T, eds. LIPIcs-Leibniz Internat. Proc. Informatics (Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl Publishing,
Germany), 538–549.

El Ghaoui L, Oks M, Oustry F (2003) Worst-case value-at-risk and
robust portfolio optimization: A conic programming approach.
Oper. Res. 51(4):543–556.

FoxA, Griffith R, JosephA, Katz R, Konwinski A, LeeG, PattersonD,
Rabkin A, Stoica I (2009) Above the clouds: A Berkeley view of
cloud computing. Report No. UCB/EECS 28(13):2009, De-
partment Electrical Engineering and Computer Sciences, Uni-
versity of California, Berkeley.

Gilmore PC, Gomory RE (1961) A linear programming approach to
the cutting-stock problem. Oper. Res. 9(6):849–859.

Goemans MX, Harvey NJ, Iwata S, Mirrokni V (2009) Approxi-
mating submodular functions everywhere. Mathieu C, ed. Proc.
20th Ann. ACM-SIAM Sympos. on Discrete Algorithms (Brown
University, Providence, RI), 535–544.

Goyal V, Ravi R (2010) A PTAS for the chance-constrained knapsack
problem with random item sizes. Oper. Res. Lett. 38(3):161–164.

Gupta V, Radovanovic A (2015) Lagrangian-based online stochastic
bin packing.ACMSIGMETRICS Perform. Eval. Rev. 43(1):467–468.

Han J, Lee K, Lee C, Choi KS, Park S (2016) Robust optimization
approach for a chance-constrained binary knapsack problem.
Math. Programming 157(1):277–296.

Johnson DS (1974) Fast algorithms for bin packing. J. Comput. System
Sci. 8(3):272–314.

Keller G, Tighe M, Lutfiyya H, Bauer M (2012) An analysis of first fit
heuristics for the virtual machine relocation problem. Lobo J,
Owezarski P, Zhang H, Medhi D, eds. Proc. 8th Internat. Conf.
Network Service Management (IEEE, New York), 406–413.

KenyonC, et al. (1996) Best-fit bin-packingwith randomorder.Proc. 7th
Ann. ACM-SIAM Sympos. Discrete Algorithms (SODA), (Society for
Industrial and Applied Mathematics, Philadelphia), 359–364.

Kim U (2015) This one chart shows the vicious price war going
on in Cloud computing. Bus. Insider (January 14), http://www
.businessinsider.com/cloud-computing-price-war-in-one-chart
-2015-1.

Kleinberg J, Rabani Y, Tardos É (2000) Allocating bandwidth for
bursty connections. SIAM J. Comput. 30(1):191–217.

Lee S, Panigrahy R, Prabhakaran V, Ramasubramanian V, Talwar K,
Uyeda L, Wieder U (2011) Validating heuristics for virtual
machines consolidation. Technical Report, Microsoft Research
Silicon Valley, Mountain View, CA.

Luedtke J, Ahmed S, Nemhauser GL (2010) An integer programming
approach for linear programs with probabilistic constraints.
Math. Programming 122(2):247–272.

Lueker GS (1983) Bin packing with items uniformly distributed over
intervals [a, b]. Proc. 24th Ann. Sympos. Foundations Computer Sci.
(IEEE, New York), 289–297.

Nemirovski A, Shapiro A (2006) Convex approximations of chance
constrained programs. SIAM J Optim. 17(4):969–996.

Pisinger D, Sigurd M (2005) The two-dimensional bin packing
problem with variable bin sizes and costs. Discrete Optim. 2(2):
154–167.

Roytman A, Kansal A, Govindan S, Liu J, Nath S (2013) Algorithm
design for performance aware vm consolidation. Technical
Report, Microsoft Research, Redmond, WA.

Shylo OV, Prokopyev OA, Schaefer AJ (2012) Stochastic operating
room scheduling for high-volume specialties under block book-
ing. INFORMS J. Comput. 25(4):682–692.

Stolyar AL, Zhong Y (2015) Asymptotic optimality of a greedy
randomized algorithm in a large-scale service system with
general packing constraints. Queueing Systems 79(2):117–143.

Svitkina Z, Fleischer L (2011) Submodular approximation: Sampling-
based algorithms and lower bounds. SIAM J Comput. 40(6):
1715–1737.

VermaA, Pedrosa L, KorupoluMR, Oppenheimer D, Tune E,Wilkes
J (2015) Large-scale cluster management at Google with Borg.
Proc. European Conf. Computer Systems (EuroSys, Bordeaux,
France), 1–17.

Zhang Y, Jiang R, Shen S (2016) Distributionally robust chance-
constrained bin packing.Working paper, University of Michigan,
Ann Arbor.

Cohen et al.: Overcommitment in Cloud Services: Bin Packing with Chance Constraints
Management Science, 2019, vol. 65, no. 7, pp. 3255–3271, © 2019 INFORMS 3271

http://www.businessinsider.com/cloud-computing-price-war-in-one-chart-2015-1
http://www.businessinsider.com/cloud-computing-price-war-in-one-chart-2015-1
http://www.businessinsider.com/cloud-computing-price-war-in-one-chart-2015-1

	Overcommitment in Cloud Services: Bin Packing with Chance Constraints
	Introduction
	Model
	Literature Review
	Results and Insights for Special Cases
	Online Constant Competitive Algorithms
	Extensions
	Computational Experiments
	Conclusion

