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onsumer Surplus is traditionally defined for the case where demand is a deterministic function of the price. How-
C ever, demand is usually stochastic and hence stock-outs can occur. Policy makers who consider the impact of differ-
ent regulations on Consumer Surplus often ignore the impact of demand uncertainty. We present a definition of the
Consumer Surplus under stochastic demand. We then use this definition to study the impact of demand and supply
uncertainty on consumers in several cases (additive and multiplicative demand noise). We show that, in many cases,
demand uncertainty hurts consumers. We also derive analytical bounds on the ratio of the Consumer Surplus relative to
the deterministic setting under linear demand. Our results suggest that ignoring uncertainty may severely impact the
Consumer Surplus value.
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consumers’ perspective. In particular, policy makers

1. Introduction and regulators are often interested in assessing the

Customer welfare is often measured by using a metric ~ impact of specific policies or interventions on con-
called the Consumer Surplus. This metric was pro- sumers. In this context, the relevant question for a
posed in 1844 by Jules Dupuit who defined the Con- policy maker is whether the standard (presumably
sumer Surplus as the difference between consumers’ deterministic) approach to calculate the Consumer
willingness to pay and market price. Subsequently, Surplus ends up overstating its value and, hence,
this concept was extensively studied in the economics paint an inaccurate picture. To measure customer
literature and applied to a multitude of domains. In  welfare in such settings, one needs a general defini-
these applications, however, it is assumed that the tion of Consumer Surplus under demand uncertainty,
demand function is deterministic and that the prod- while accounting for the events where products are
ucts are always available (i.e., no stock-outs). not available (i.e., stock-outs).

In real-world settings, demand is stochastic by nat- As observed in Krishnan (2010), demand uncer-
ure. Data scientists and statisticians constantly aim to tainty renders the welfare analysis more intricate.
improve demand prediction algorithms, but no Including a stochastic term in the demand function
method will consistently yield a perfect prediction. may hinder the existence of an underlying representa-
Consequently, firms will do their best to predict tive customer utility function and, thus, utility analy-
demand but prediction errors remain inevitable. The sis may not be possible. Besides this concern, demand
operations management (OM) community has pro- uncertainty may also lead to scarcity and stock-outs.
posed to study such settings by considering a stochas- Given a price, the demand function represents the
tic demand function and intends to make optimal maximum number of units to be consumed (or at least
decisions under uncertainty. OM researchers have desired to be consumed). Such a demand function
studied various problems such as supply chain man- captures multiple consumers, each endorsed with a
agement, revenue management, and queuing sys- particular willingness to pay for the product. When
tems. While the focus has mainly been on the firm'’s demand exceeds supply, not all customers who are
perspective, several recent research trends (e.g., sus- willing to buy the product will be served.' As a result,
tainable operations) study the problem from the the Consumer Surplus will depend on the set of
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consumers who receive the product. We formalize
this intuition by using the notion of capacity alloca-
tion rule (see Section 2.2.1).

Several prior papers have studied the impact of
demand uncertainty but their focus was mainly on
prices, production quantities, and firms’ profits. A
classical example is the newsvendor problem in
which the optimal production quantity is derived
when the firm only knows the demand distribution
(as opposed to the exact realization). Other studies,
such as Mills (1959) and Karlin and Carr (1962), com-
pared the optimal prices and profits earned by firms
in the stochastic setting relative to their deterministic
counterparts for additive and multiplicative demand
noises. However, these studies do not address the
impact of demand uncertainty on consumers. As
mentioned, assessing the impact of policies or inter-
ventions on consumers is of great interest to policy
makers. Given the stochastic nature of most real-
world settings, one needs a precise way to measure
customer welfare when demand and supply are
uncertain. This paper aims to bridge this gap by
proposing a first step in answering this question.

What happens if we ignore stock-outs and demand
uncertainty when computing the Consumer Surplus?
Obviously, the answer will depend on which cus-
tomers receive the limited supply. In this paper, we
present a formal definition of the Consumer Surplus
under stochastic demand and stochastic supply. We
then compare the Consumer Surplus relative to the
deterministic setting for various noise structures and
capacity allocation rules. Our model and analyses
allow us to answer the question of whether more
uncertainty is good or bad for consumers—and to
what extent. It can thus provide guidelines to firms
and regulators on the potential need for investing
efforts in collecting additional data and in developing
more sophisticated prediction methods to reduce
demand uncertainty.

1.1. Contributions

In economics, the concept of Consumer Surplus has
mainly focused on cases where demand is a determin-
istic function of the price, so that products are always
available (see, e.g., Tirole 1988, Vives 2001). As men-
tioned, many real-world settings are stochastic by nat-
ure and modeled via a stochastic demand function.
With the goal of accurately measuring customer wel-
fare, this paper offers a first step in generalizing the
notion of Consumer Surplus and examining the
impact of demand and supply uncertainty on con-
sumers. We next summarize our contributions.

® Presenting a generalization of the Consumer Sur-
plus notion. As discussed, when products are
not necessarily available, the Consumer

Surplus will naturally depend on which cus-
tomers receive the limited supply. We use
capacity allocation rules to model the way
available units are allocated to consumers
when demand exceeds supply. We first pro-
vide a rigorous definition of a capacity alloca-
tion rule. We then present a general definition
of the Consumer Surplus for multiple products
under stochastic demand. To our knowledge,
this paper is the first to propose such a general
extension.

® Studying the impact of demand and supply uncer-
tainty on consumers. Armed with our Consumer
Surplus definition, we study the impact of
demand and supply uncertainty on consumers
for several special cases (multiplicative and
additive demand noises). Specifically, we com-
pare the expected Consumer Surplus to the
deterministic setting, under the same prices.
We also extend our results to the setting where
prices are endogenously determined. We show
that in many cases, demand uncertainty hurts
consumers. Under a demand with multiplica-
tive noise, consumers are always better off in
the deterministic setting. Interestingly, this
result holds for any demand function, any
noise distribution, and any allocation rule.
Under an additive demand noise, we show
that the impact of demand wuncertainty
depends on the allocation rule and on the con-
vexity properties of the demand. Finally, we
show that regardless of the type of noise, the
expected Consumer Surplus under stochastic
supply is always lower relative to its deter-
ministic counterpart. Ultimately, our results
suggest that ignoring uncertainty may severely
impact the Consumer Surplus.

® Deriving analytical bounds on the Consumer Sur-
plus ratio relative to the deterministic setting under
linear demand. Under additional assumptions,
we derive bounds on the impact of demand
uncertainty on the Consumer Surplus. We
show that the expected Consumer Surplus
under stochastic demand can be as far as 50%
relative to the deterministic setting.

1.2. Literature Review

The Consumer Surplus is typically defined as the dif-
ference between consumers’ willingness to pay and
market price. This definition was first introduced by
Jules Dupuit in 1844 as utilité relative. Later on, Alfred
Marshall relabeled this concept as Consumer Surplus
in the Principles of Economics in 1890, denoting it as the
upper triangle of the inverse demand curve. Since
then, hundreds of academic papers were published
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on this topic (we cannot give proper credit to the
extensive research conducted on this topic). Several
studies have developed analytical frameworks (see,
e.g., Takayama 1982, Willig 1976), whereas others
have focused on applications spanning a multitude of
contexts.

The basic definition of the Consumer Surplus relies
on computing the area between the market price p
and the inverse demand curve (see, e.g., Pindyck and
Rubinfeld 2018, Tirole 1988, as well as section 2.1
below). This definition rests on the assumption that
the product is always available and that there are no
stock-outs. Specifically, in most previous work, the
framework developed to compute the Consumer Sur-
plus focuses on the case where the demand curve is a
deterministic function of the price. As mentioned,
many real-world settings are modeled using a
stochastic demand. To measure customer welfare in
such settings, one needs an appropriate definition of
the Consumer Surplus. Indeed, calculating the Con-
sumer Surplus while ignoring stock-outs may lead to
a severe overestimate. Furthermore, the correct esti-
mate naturally depends on the set of customers who
receive the limited supply. Extending the notion of
Consumer Surplus under stochastic demand and sup-
ply is one of the main goals of this paper.

Several papers on peak load pricing and capacity
investments by a power utility under stochastic
demand address partially this modeling issue (see
Brown and Johnson 1969, Crew et al. 1995). Neverthe-
less, the models developed in this literature are not
applicable to settings where consumers arrive ran-
domly and not according to their valuations. Specifi-
cally, in Brown and Johnson (1969), the authors
assume that the utility power facility has access to the
willingness to pay of consumers, so that it can decline
the ones with lowest valuations. This assumption is
not justifiable in a setting where a first-come-first-
serve logic with random arrivals is more suitable
(e.g., the retail industry). In a similar spirit, Ha (1997)
and Liu and Van Ryzin (2008) study optimal rationing
policies for a firm that faces uncertain demand. In Raz
and Ovchinnikov (2015), the authors study a price-
setting newsvendor model for public goods and con-
sider the Consumer Surplus for a single product with
linear additive stochastic demand. In Cohen et al.
(2015), the authors study the impact of demand uncer-
tainty on consumer subsidies for green technology
adoption and propose a special case of the definition
presented in this paper. To our knowledge, this paper
is the first to provide a rigorous extension of the Con-
sumer Surplus definition under stochastic demand
for multiple products and any capacity allocation
rule.

The second contribution of this paper is to use our
Consumer Surplus definition to study the impact of

demand and supply uncertainty on consumers.
Examining the impact of demand uncertainty (or
stock-outs) has been a common research topic in the
OM literature. Examples include inventory and sup-
ply chain (Gupta and Maranas 2003, Kaya and Ozer
2011, Ozer and Wei 2004), capacity investment (Goyal
and Netessine 2007), and subsidies for green technol-
ogy adoption (Cohen et al. 2015). The results of this
paper can be of interest to policy makers when assess-
ing the customer welfare in various settings where
uncertainty is inherent.

Structure of the paper. In section 2, we present our
results for the single product model. We then extend
the treatment for multiple products in section 3. In
section 4, we consider the impact of supply uncer-
tainty. Finally, our conclusions are reported in section
5. Most of the proofs of the technical results are rele-
gated to the appendix.

2. Single Product

In this section, we consider the case of a supplier (also
referred to as seller) selling a single product. The
single-product setting is an important building block
as it allows us to develop the intuitions and tools
needed for the setting with multiple products consid-
ered in section 3. We assume that the seller is facing a
stochastic demand curve d(p, €). Specifically, we
explore two commonly-used noise dependences: (i)
additive, that is, d(p, €) = d(p) + ¢, where ¢ is a ran-
dom variable with mean 0; and (ii) multiplicative, that
is, d(p, €) = ed(p), where ¢ is a positive random vari-
able with mean 1.> The function d(p) is called the nom-
inal demand function and corresponds to the setting
with deterministic demand (i.e., ¢ = 0 with probabil-
ity 1 in the case with additive noise and ¢ =1 with
probability 1 for the multiplicative noise). We assume
that d(p) is strictly decreasing. We refer to d™'(q) as the
nominal inverse demand. We assume that d~'(g, €) exists
and is defined so that dd~'(g, €), €) = g.

As is common in the OM literature, we assume that
the nominal demand d(p) is only a function of the
price, omitting arguments such as income and utility
(which are explicit arguments of the Marshallian and
Hicksian demands, respectively).® If d(p) comes from
a representative consumer solving the utility-
maximization problem (UMP), then this utility func-
tion has to be quasilinear (so that the welfare can be
properly measured), namely, the representative
consumer  utility function is such  that
U(xo, x1) = x9+u(x1), where xp is the consumption of
a numeraire good with price equal to 1 (for more
details, see Varian 1992, Chapter 10). The UMP can be
written as maxy, v, Xo + #(x1) subject to the budget con-
straint xo+px; <I. Equivalently, one can write
I+ maxy, u(x1) —pxq, resulting in a demand that only
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depends on the price p. Alternatively, one can con-
sider a representative consumer solving the
expenditure-minimization problem (EMP) given by
miny, , Xo+px1 subject to U(xp, x1) > u'. The latter
can be rewritten as u’' + min,, px; —u(x;). As discussed
in Varian (1992), the income is assumed to be high
enough so that the product consumption is indepen-
dent of income. We thus assume throughout the
paper that d(p) (and d(p, ¢) in the stochastic case) is
only a function of the price (and noise). Assuming
that demand integrability conditions are satisfied, this
is equivalent to require a quasilinear utility function
and that the representative consumer’s income is high
enough. Our goal is to study the Consumer Surplus
under a general stochastic demand function. First, we
briefly recall the definition under deterministic
demand.

2.1. Deterministic Demand

Consumer Surplus is an economic measure of con-
sumer net welfare to quantify product consumption
given the incurred expenditures. This can be com-
puted as the area between the market price p and the
inverse demand curve (see an illustration in Figure 1).
For given values of p and g = d(p), the Consumer Sur-
plus under deterministic demand, CS;,;, can be com-
puted as:*

d(p) 1
CSM:/ [d™ (w) — pldw. e))
0

Equivalently, the Consumer Surplus can be com-
puted by integrating over the price space:

max

CSaer = / d(z)dz,
P

where p™™* is d1(0), that is, the inverse demand at
zero or +oo when d~'(0) is not defined (e.g., for d
(p) = 1/p); sometimes called “the null price.” In the
remainder of this paper, we focus on the Consumer
Surplus expression in Equation (1), where the inte-
gration is taken over the quantity space. Note that
since d(z) > 0 and p < d710), one can see that CS
is non-increasing in p.

2.2. Stochastic Demand

When demand is stochastic, defining the Consumer
Surplus is more subtle due to the possibility of stock-
outs. More precisely, if the demand at price p under a
particular realization e happens to be greater than the
available supply g (i.e., d(p, ¢€)—q > 0), some con-
sumers who are willing to make a purchase will not
be served due to the limited supply. This stock-out
event clearly affects customer welfare and, hence,
should be accounted for in the Consumer Surplus

Figure 1 Illlustration of the Consumer Surplus for a Single Product
Under a Deterministic Linear Demand

price

pmax

g =d(p) quantity

definition. To further motivate this issue, consider the
following “discretized” example with two customers
with valuations 8 and 6, and assume that there are
two items available at price p = 3. In this case, both
items are allocated, and the Consumer Surplus is
CS =(8 - 3) + (6 — 3) = 8. We now introduce a posi-
tive shock that doubles the demand while keeping the
same proportion of customers at each valuation (such
a shock corresponds to a multiplicative demand noise
with € = 2). What is the Consumer Surplus in this
case? It is clear that the answer will depend on how
both available items are allocated to the four cus-
tomers. Our goal is to propose a method for comput-
ing customer welfare under any possible allocation.
In the previous example, one can interpret the four
customers’ valuations as the marginal utility of a rep-
resentative consumer who maximizes welfare subject
to a maximum consumption of two items. In this case,
the two customers with the highest valuation will
receive the item. However, from a modeling perspec-
tive, this might be restrictive since it does not provide
any flexibility on the allocation. For example, what
happens if the items are randomly allocated to the
four consumers? Our proposed Consumer Surplus
definition will sustain any type of allocation.

We note that for stochastic demand functions, the
Consumer Surplus CS(¢) will be a function of the
noise realization e. An upper bound on the Consumer
Surplus can be obtained by considering the case with
infinite supply, that is, fg (Pe) [d " (w, €) — pldw. In real-
ity, as we mentioned, we have to account for situa-
tions where demand exceeds supply. In particular,
the actual Consumer Surplus will be a fraction of this
upper bound, based on the proportion of customers
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who are served. The way of formalizing this precise
proportion of served customers depends on the speci-
fic rationing capacity rule under consideration.

2.2.1. Rationing Capacity Rules. In practice, when
suppliers receive an unexpectedly large amount of
orders, they need to decide how to allocate their sup-
ply. Even if the supply allocation rule is not chosen by
the seller, it is important to account for the way prod-
ucts are allocated when computing the Consumer Sur-
plus. In this context, one can consider several rules for
allocating available quantities. In most settings, suppli-
ers do not have access to customer valuations and sim-
ply assign supply to the first customers that show up to
their stores. Examples include car dealers, fashion, elec-
tronic products, and online shopping. In addition, cus-
tomers” arrival times are often independent of
valuations for the product and, hence, we label this rule
with the superscript R (Random allocation). In other
words, all potential customers who are interested in
purchasing the product, have the same likelihood to be
served. Two additional common rules are H (Highest
willingness to pay) and L (Lowest willingness to pay).
As their names indicate, available supply is allocated to
the consumers with the highest (resp. lowest) willing-
ness to pay,” and discard the consumers with the lowest
(resp. highest) valuations. Note that these two alloca-
tion rules are the best (resp. worst) in terms of the total
customer welfare. Besides these three allocation rules,
one can consider alternative rules. More precisely, a
general allocation rule A can be any allocation of avail-
able capacity g at price p to the consumers for a given
demand realization d(p, ¢). Mathematically, an alloca-
tion A is defined as a function®A: [0, d(p, €)] — [0, 1]
so that for any p, g, and ¢, we have:

d(p-e)
/ A(w)dw =min{d(p, ¢€), q}. 2
0

Then, for any w € [0, d(p, ¢)], A(w) can be inter-
preted as the likelihood that an infinitesimal con-
sumer receives the product. Equation (2) ensures
that the total supplied units under the allocation
rule A are equal to the volume of sales (i.e., the min-
imum between demand and supply). Thus, given p,
g, and ¢, the allocation rules functions AHAE, AR
are .AH (w) = ]]{WSq}r .AL(ZU) = ﬂ{wzd(p‘g),q}, and
AR (w) = min{l, ﬁ}
given an allocation rule, the Consumer Surplus can
be defined as the sum of the surplus over con-
sumers who are willing to make a purchase,
weighted by their likelihood of receiving the prod-
uct. Although this definition holds for any allocation
rule, our analysis will focus on the three most popu-
lar rules H, L, and R.

respectively. Consequently,

2.2.2. Definition and Graphical Interpretation. In
this section, we present the Consumer Surplus defi-
nition under a general stochastic demand function
d(p, €). We first present the expression for a general
allocation rule A and then for the three aforemen-
tioned rules (H, L, and R). In addition, we provide
a graphical interpretation by illustrating the defini-
tions for the case of a linear demand with additive
noise. A similar methodology and graphical intu-
itions can be found in Visscher (1973) for the total
welfare (the sum of consumer and supplier sur-
pluses).

For a general allocation rule A, the Consumer Sur-
plus for any given e and (p, q) is given by:’

CSA(e) = / P ) - A, B
0

Under such a general allocation rule, it is often
impractical to measure the Consumer Surplus. We
thus consider the three special rules, H, L, and R. As
discussed, the H and L rules can be seen as best- and
worst-cases, respectively in terms of the Consumer
Surplus value (this is formally shown in Observation
1 below).

For the H rule, the Consumer Surplus for any given
e and (p, q) is given by:

d(pe)
CSH(e) = /O (A7 (w0, €) — p]1 gy < ) 0.

This rule is the best possible situation for the pool
of consumers, as customers with high valuations
typically want the product the most and are served
with the highest priority. In practice, this setting can
occur when customers are passionate and eager to
buy the product (e.g., concert tickets, new genera-
tion of technology products). In the case where
demand exceeds supply (i.e., d(p, €) > ), the d(p, €) — g
customers with the lowest valuations are not
served and, hence, the surplus of those consumers
is 0 (an illustration is shown in the left panel of
Figure 2).

For the L rule, the Consumer Surplus for any given
e and (p, q) is given by:

d(p.e)
CSt(e) = /0 A (w, &) = Pl w05 dip.e)—q) dew-

This rule is the worst possible situation for con-
sumers, as customers with high valuations are
served with the lowest priority. In practice, this set-
ting can correspond to the case where low-valuation
customers are deal seekers and arrive first to the
store (e.g., promotional events or flash sales). In this
case, when demand exceeds supply (i.e., d(p, €) > q),
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Figure 2 Left: High Willingness to Pay Allocation Rule. Center: Low Willingness to Pay. Right: Random Allocation Rule. The Shaded Region Repre-
sents the Consumer Surplus for the Case When Demand Exceeds Supply

price price

price

quantity q

the d(p, €) — q customers with the highest valuations
are not served (see the center panel of Figure 2).

For the R rule, the Consumer Surplus for any given
e and (p, q) is given by:

Ry [ g
CS (e)—/o [d (w, e) p]mm{l, i, 8)}dw. )

Under the R rule, customers arrive at random irre-
spective of their willingness to pay for the product.
For certain demand realizations, some proportion of
these customers will not be served due to stock-
outs. The proportion of served customers is given
by the ratio of actual sales over potential demand,
that is, min{1, ﬁ}. Thus, the Consumer Surplus
can be defined as the total available surplus times
the proportion of served customers. In this case, the
Consumer Surplus can be depicted as the grey area
between the inverse demand and the price (see the
right panel of Figure 2). Equivalently, when demand
exceeds supply, each infinitesimal consumer has a
surplus weighted by q/d(p, €). We note that the case
of a random allocation rule with an additive noise
for a single product was already considered in the
literature (see, e.g., Cohen etal. 2015 Raz and
Ovchinnikov 2015).

We highlight that all the above definitions coincide
with the deterministic definition in Equation (1) when
the noise vanishes (i.e., e = 0 and € = 1 for additive
and multiplicative noises respectively) and when
g = E[d(p, €)]. In section 2.3, we study the impact of
demand uncertainty on consumers by comparing
CS,et to the expected Consumer Surplus E[CS” (¢)] for
the H, L, and R allocation rules. It allows us to infer
what would happen if one is ignoring demand uncer-
tainty and stock-outs when measuring customer wel-
fare. Finally, note that for any allocation rule, the
following property holds.

quantity q d quantity

O?bservation? 1.

holds:

For any A, p, q, and ¢, the following
CSt(e) < CSA(e) < CSH (e).

The proof of Observation 1 can be found in the
appendix. As a result, we also have E[CS"(¢)] <
E[CS?(¢)] < E[CS(¢)]. Consequently, by studying the
H and L rules, we cover the best and worst cases for
consumers.

As discussed, the demand function comes from the
result of a utility-maximization problem solved by a
representative consumer. Consequently, the source of
uncertainty in the demand function also comes from
the corresponding uncertainty in the utility function.
We emphasize that the underlying utility model—
along with its own source of uncertainty—gives rise to
the stochastic demand function we consider. Another
way to derive the Consumer Surplus is by directly con-
sidering the representative consumer utility function
denoted u(v). Interestingly, one can derive the same
expressions for the Consumer Surplus under stochastic
demand from a utility perspective (the details are omit-
ted for conciseness). In summary, we defined the Con-
sumer Surplus for a stochastic demand function with a
general capacity rule. At the same time, it extends the
current understanding of consumer utility and its con-
nection to the Consumer Surplus.

2.3. Impact of Demand Uncertainty on Consumers
Our goal is to investigate to what extent ignoring
stock-outs and demand uncertainty will lead to a mis-
calculation of the Consumer Surplus. As discussed,
this question can be of interest to policy makers when
assessing the customer welfare of specific policies or
public interventions. We consider both additive and
multiplicative noises and the three allocation rules
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discussed in Section 2.2.1. To simplify the analysis
and to isolate the effect of demand uncertainty, we
first assume that the market price is the same in both
the deterministic and stochastic settings. This can be
motivated by the fact that the supplier is serving two
different markets (e.g., selling the same product in
two different countries) and must set the same selling
price due to regulations or marketing considerations.
For example, studying the impact of demand uncer-
tainty can be helpful when the supplier plans to enter
a new market for which sales data are very limited.
We then extend our results to the more general setting
where prices are exogenously determined.

2.3.1. Exogenous Pricing. When demand is deter-
ministic, the supplier naturally matches supply with
demand, namely, ¢° = d(p°), where p° denotes the
market price. When demand is stochastic, we assume
that the price is still equal to p° but the quantity ¢
can differ from d(p°). For instance, the quantity could
be set according to the optimal newsvendor ordering
(see, e.g., Petruzzi and Dada 1999, Porteus 1990) or
according to an alternative ordering policy.

We first consider the case of a multiplicative noise,
d(p, €) = ed(p). The result on the impact of demand
uncertainty on consumers is summarized in the fol-
lowing proposition.

ProrositioN 1. Consider a stochastic demand function
with a multiplicative noise under any given allocation
rule A. We then have

E[CS(€)] < CSer-

Proof. We show the result for the H rule. Then, by
relying on Observation 1, we conclude that the
result also holds for any allocation rule. We have

[ ()
E[CS"(e)] =E /0 (d ' (w, 8)—P°)ﬂ{wsq0}dW]

. | /Ogdw") ( g (9 —po)ﬂ{wqu} dw]

dp®)

_E / (@7 (0) = )1 e < oo
0

d(p®)

/ (@ (@) — p*)eddo

0

d(p°)
= / (cl’1 (v) — po) dv=CSget,
0

<E

where the last equality follows from E[e] = 1. O

Interestingly, the result holds for any ¢*°, any noise
distribution, and any allocation rule. Therefore, no
matter how sophisticated the supplier is in terms of
allocating available supply, the consumers are always
hurt when demand is stochastic relative to the deter-
ministic setting (for a multiplicative noise). Indeed,
positive demand shocks (i.e., € > 1) bring additional
consumers but their valuations will not increase by
much. This is especially true for customers who value
the product the most. In particular, the maximal valu-
ation, d~'(0), remains the same regardless of the noise
realization, since the inverse demand function at
g =0 is not affected by the noise realization. This
observation does not hold for an additive noise.

We next consider the model with an additive
noise, d(p, €) = d(p) + e. In this case, the impact of
demand uncertainty on consumers depends on
three different factors: (i) the convexity properties
of the nominal demand function d(p), (ii) the alloca-
tion rule, and (iii) the relation between d(p°) and
g°°. The results are summarized in the following
proposition.

ProrosiTioN 2. Consider a stochastic demand function
with an additive noise and the three allocation rules, H,
L, and R. We then have the following results:

® H rule: If ¢ > d(p°) and d™'(-) is convex,

E[CS" (€)] > CSyer-

® L rule: If ¢ < d(p°),

E[CS"(€)] < CSe-

® R rule:If ¢ < d(p°) and d~'(-) is concave,

E[CSR (5)] < Csdet-

Note that in each case, the conditions are only suffi-
cient. In other words, if one of the conditions is not
satisfied, we can find examples in which the inequal-
ity can be in either direction. It follows that the impact
of demand uncertainty on consumers (under an addi-
tive noise) is driven by both the allocation rule and
the demand convexity or concavity. An interesting
special case is linear demand with g°° = d(p°) (i.e., the
supplier produces according to the expected demand
value). In this case, the impact of demand uncertainty
on consumers crucially depends on the ability of the
supplier to identify and discriminate consumers. In
particular, under the H rule (best scenario for con-
sumers), the consumers are better off when demand
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Figure 3 Left: Convex Inverse Demand Curve. Right: Concave Inverse Demand Curve. The Solid Line Represents the Nominal Demand Function,
whereas the Dashed Line Corresponds to the Demand Function with an Additive Positive Shock. The Shaded Area Represents the Potential

Additional Consumer Surplus

price

quantity

q d(p.g)

is stochastic, whereas this conclusion is reversed under
the R or L rule. Regarding the convexity properties, a
convex demand (and thus a convex inverse demand)
will typically result in a higher surplus gain for con-
sumers. This follows from the fact that positive
demand shocks will induce additional customers with
much higher valuations relative to the deterministic
nominal demand. We illustrate this effect in the left
panel of Figure 3, where the shaded area represents
the surplus of these additional customers assuming
they get served. However, under a concave demand
(and hence a concave inverse demand), positive
demand shocks will introduce additional consumers
with valuations only slightly higher relative to the
deterministic setting, see the right panel of Figure 3.

In addition, if §°° is thought in terms of the optimal
newsvendor quantity, the condition ¢*° < d(p°) trans-
lates into F'(!37°) <0 (under an additive noise),
where F(-) is the CDF of the noise € and c is the (con-
stant) marginal production cost. This condition is thus
satisfied for products with low profit margins. In par-
ticular, if ¢ is symmetric, the condition reduces to
c<p’ <2

One can also consider an alternative setting where
the supplier produces ¢° units in both the deterministic
and stochastic cases, where 4° is not necessarily equal
to d(p°). Such a setting may correspond to situations
where suppliers need to make capacity decisions
before knowing the demand realization. In this case,
we can extend most of the results presented in this sec-
tion (the results are omitted for conciseness). Neverthe-
less, it seems reasonable to assume that when demand
is deterministic, we have q° = d(p°) as the supplier can
tailor its production to exactly match demand.

2.3.2. Endogenous Pricing. We next consider the
case where prices are endogenously determined.

price

q d(p,e) quantity

In reality, market prices can be set by solving a
revenue-maximization problem. Consequently, the
equilibrium prices in both settings (deterministic and
stochastic) may possibly differ and, thus, the Con-
sumer Surplus will also differ. To capture the endoge-
nous nature of prices, we incorporate the seller’s
pricing and production strategy into the revenue-
maximization problem. We consider a marginal pro-
duction cost ¢ > 0. For the deterministic setting, the
seller solves the following problem:

max (p—o)d(p). ®)

We denote by p? the maximizer of problem (5) and
q" = d(p”). Then, the Consumer Surplus can be sim-
ply comfuted by using the expression
CShet = fg v (d~"(w) — p)dw. For the stochastic setting,
the optimization problem becomes

max pE[min{d(p, €), q}] — g, 6)

which is the price-setting newsvendor problem. We
denote (p°, ¢°) the optimal solution of problem (6).
Before stating the relation between the Consumer
Surplus in both settings, we first state a well-known
result on the relationship between the optimal prices
from problems (5) and (6) for additive and multi-
plicative noises (Karlin and Carr 1962, Mills 1959,
Salinger and Ampudia 2011).

Lemma 1. Under an additive noise p® > p°, whereas
under a multiplicative noise p* < p°.

The next proposition compares the Consumer Sur-
plus in the deterministic and stochastic settings
under a multiplicative noise when prices are endo-
genous.
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ProrositioN 3. Under a stochastic demand function
with a multiplicative noise and any capacity allocation
rule A, we have

E[CS?(e)] < CSer. 7)

Thus, consumers are always better off in the deter-
ministic setting not only under the same (exogenous)
prices, but also when the optimal prices and quanti-
ties are endogenously determined. The next proposi-
tion summarizes the results for an additive demand
noise.

ProrosimioN 4. Consider a stochastic demand function
with an additive noise and the H allocation rule such that
q° > d(p°) and d~*(-) is convex. We then have

E[CSH ()] > CSyer. 8)

Note that in the case of an additive demand noise,
unlike the case of exogenous prices (i.e., Proposition 2),
consumers are not always worse off under the R or L
rule when prices are endogenously determined (we
formally identified counterexamples). The rationale
behind this result is that uncertainty under an additive
noise induces a lower price, hence offsetting the
inequalities for the R and L rules outlined in Proposi-
tion 2 for the case with exogenous prices.

We highlight that there is no clear way to compare
the Consumer Surplus under exogenous and endoge-
nous pricing. Indeed, the results will highly depend
on the value of the exogenous price. Consider, for
example, the setting with a single product. Let p,
denote the price in the exogenous setting. If p, is very
high, it is clear that the Consumer Surplus will be
lower under exogenous pricing, whereas if py is very
low, then the Consumer Surplus will be higher under
exogenous pricing. In the revised paper, we have now
explicitly mentioned the fact that this comparison
highly depends on the value of the exogenous price.

3. Multiple Products

In this section, we consider a setting with n > 2 prod-
ucts. The demand function, d(p, €): R" x R" — R, is
expressed as a function of the price vector p € R" and
a random vector e €R" with support QCR". We
assume that d(p, €) is continuous in p and € and dif-
ferentiable almost everywhere with respect to p.® As
before, we consider the following two cases: (i) addi-
tive noise: d(p, €) = d(p) + € and (i) multiplicative
noise: d(p, €) =D.d(p), where D, refers to the diago-
nal matrix with the elements of € in its diagonal. As
stated in Krishnan (2010), for a demand with multi-
plicative noise, the Slutsky symmetry conditions (de-
fined formally below) can only be met if the

realizations of the random variables ¢; are identical
across all products, that is, D, = ¢;I where IeR"*" is
the identity matrix. Throughout this paper, when
referring to the setting with multiple products under
multiplicative noise, we impose D, = ¢;1. We assume
that E[ej] =0 and Elg;] =1 for all i € {1, ..., n} in the
additive and multiplicative cases, respectively. We
also assume that the demand for each product is
decreasing in its own price and non-decreasing in
the other prices (.e., S—Zf <0foralliefl, ..., n} and
gif >0forallije(l, RIRE 7). This is a common
assumption that captures the fact that the products
are substitutable goods (e.g., two competing brands
in the same category). Modeling the substitutability
behavior of consumers by using this type of demand
models is common in the literature (see, e.g., Cohen
and Perakis 2020, Cohen et al. 2020, Pindyck and
Rubinfeld 2018). We highlight that the substitution
behavior is captured by the cross-price effects present
in the demand function (here, substitution refers to
customers switching products based on price varia-
tion, as opposed to focusing on stock-out events). We
note that in a model where the demand of each pro-
duct is a function of all products’ prices, stock outs
are not explicitly captured in the demand model.
However, we formally capture the stock-out events
by inputting the minimum between demand and
supply, namely, min{d; q;} for each product
i=1,..., n. Thus, consumers are still substituting
among the products based on pricing considerations;
but the demand corresponds to the total number of
demanded units, as opposed to the sales. To account
for potential stock outs, we truncate the demand by
taking the minimum between demanded units and
available supply. In the appendix, we consider and
analyze an alternative model that explicitly captures
substitution into the consumer utility-maximization
problem by accounting for inventory constraints. This
modeling framework naturally leads to a model in
which the outcome consumption results in a demand
function that allows for substitution among products
in the events of stock-outs. Interestingly, this alterna-
tive utility model leads to the same results and
insights presented in this section. In addition, we
assume that the price change of a particular product
has a stronger effect on its own demand realtive to the
sum of the price changes of the other products (i.e.,

2 i g%;‘ < ‘%’ forallj € {1, ..., n}). This assumption is
called the strict diagonal dominance condition and is
common in the literature (see, e.g., Arrow and Hahn
1971). The above assumptions imply that the negative
of the demand Jacobian (with respect to prices) is a
non-singular M-matrix and, hence, the Jacobian of the
inverse demand is non-positive with strictly negative
elements in its diagonal.
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3.1. Deterministic Demand and Slutsky
Conditions

In the deterministic setting, the demand vector is a
function only of the price Vec’for,9 that is,
d(p): R" — R’. In this case, we naturally have d
(p) = q. Note that for a given q, the inverse demand
function d~'(q) represents the maximal price vector
for which consumers will demand q units (i.e., con-
sumers’ willingness to pay). This interpretation is
important as we will compute the Consumer Surplus
by integrating consumers’ willingness to pay over the
quantity space. Alternatively, one can integrate over
the price space, as in [1000] where the author com-
putes the Consumer Surplus for multiple products
under deterministic demand. In this case, the Con-
sumer Surplus is expressed as the path integral over
the sum of the demand functions of each product.
Thus, the value of the integral may be path dependent
if the Slutsky conditions are not satisfied."” To avoid
the undesired path-dependence property, we assume
that the Slutsky conditions are satisfied. We acknowl-
edge that this condition is somewhat restrictive. How-
ever, if we were to relax the Slutsky condition, then it
would not be possible to adequately measure the
Consumer Surplus (for a setting where the demand
function comes from a representative consumer
utility-maximization problem). To our knowledge,
the Slutsky condition has been imposed in all the
studies that consider a formal demand function that
comes from a utility maximization problem faced
by a representative consumer. As otherwise, mea-
suring the Consumer Surplus (even in a determinis-
tic setting) is impossible. In this paper, we will
compute the Consumer Surplus as the path integral
over the inverse demand for cases where there may
be a mismatch between demand and supply. As
mentioned, when demand is stochastic, the pro-
duced units can sometimes be lower than demand.
As in the single-product setting, we address this
issue by introducing an n-dimensional allocation
rule that assigns the available supply to customers
(see section 3.2 for more details). We next write the
Consumer Surplus as the path integral over the
inverse demand function:

CSua= [ 74(r)pl-dr, ©)
C

where C is an integration path from 0€R" to q =
d(p) and defined by the parametric function
r:a, b] — TTiL;[0, g;] which is continuous and differ-
entiable almost everywhere. The expression in Equa-
tion (9) is wuniquely determined (i.e, path
independent), if the cross derivatives of the inverse
demand function (or demand function) are equal,
see Tirole (1988). Otherwise, the expression in

Equation (9) would depend on the path of integra-
tion. Note that in the single-product setting, such an
issue does not exist, as the path moves along a
unique direction on a segment.

So far, we assumed that demand and supply are
matching (i.e., d(p) = q). Nevertheless, in several
applications, this may not be the case. This motivates
us to study the more general setting when supply and
demand do not necessarily match (i.e., d(p) # q).

3.2. Stochastic Demand

Consider vectors p and q. We do not necessarily
impose q = E[d(p, €)]. As discussed, when demand is
stochastic, there may be cases where production
quantities are lower than the demand for each prod-
uct. Our goal is to define the Consumer Surplus for
multiple products, while accounting for potential
stock-outs. Since the multiple-product setting is more
intricate than the single-product setting, for ease of
exposition, we first present the definition for the H
and L rules from a utility perspective. We will then
write these expressions as a function of the inverse
demand. As discussed, the H and L rules correspond
to the best- and worst-case scenarios in terms of Con-
sumer Surplus and, hence, can serve as identifying
performance bounds. Finally, we will consider the R
rule and generalize to any allocation rule.

Under the H allocation rule, if the available units q are
lower than the demand d(p, €), a portion of the utility
will not be captured by consumers. Following a similar
argument as in the single-product case, the utility under
this allocation will be captured by the first consumers on
each item and, thus, the Consumer Surplus is u(min{q,
d(p, €)}) —u(0) —pTmin{q, d(p, €)}, where u(0) =0.
The H rule implies that among the d;(p, €) consumers
who are willing to purchase product i, only the con-
sumers with the highest valuations will be served (.e.,
the first min{d;(p, €), 9;} customers). For the L rule, as
in the single-product case, the utility of consumers is cap-
tured by the last units consumed, namely, the consumers
from max{d(p, €) — q,0} to d(p, €) and, thus, the Con-
sumer Surplus under the L rule is u(d(p,e))—
u(d(p, ) —max{q, 0}) —pTmin{q, d(p, €)}. We illus-
trate these two definitions for a setting with two prod-
ucts in Figure 4.

We note that the utility-maximization problem
leads to d ' =Vyu, so that the Consumer Surplus
can be written as a function of the inverse demand.
For the H rule, the integral of the inverse demand
should go from 0 to min{q, d(p, €)}. The latter can
be expressed using an integration path from 0 to d
(p, €), while weighting the inverse demand with the
corresponding allocation. We denote by C*° the path
from 0 to d(p, €) and by r* the corresponding para-
metric function along the path."' Then, the integral
path for the H rule goes from 0 to min{q, d(p, €)}
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Figure 4 Example with n = 2 on How to Compute the Consumer Sur-
plus for the H and L Rules

item 2

d, u(d)
a4 u(min{q,d})

H
L
u(max{d —q,0})
d,—a,
u(0)
d;—q a; d;

item 1

with a weight of 1, whereas the remaining path goes
from min{q, d(p, €)} to d(p, e) with a weight of 0.
We then have

CS'(e)= [ 217 (%, 0)=plic g, 0

where C° is any path consistent with the H rule in
the sense that it crosses the point min{q, d(p, e)}.
Note that the expression in Equation (10) is path
independent across all such paths. In addition, the
Consumer Surplus can alternatively be written as
the difference between the utility evaluated at min{d
(p, €), q} and 0 (which is consistent with the tradi-
tional deterministic interpretation).

For the L rule, the integral of the inverse demand
should go from max{d(p, €)—q, 0} to d(p,e). Recall
that under the L rule, items are allocated to customers
with the lowest valuations (among all customers with
a valuation above price). Namely, among the d;(p, €)
customers who demand product i, only the
min{d;(p, €), q;} customers with the lowest valuations
will be served. Equivalently, we can consider any
path C° from 0 to max{d(p, €) — q, 0} with a weight of
0 and, then, from max{d(p, €) — q, 0} to d(p, €) with a
weight of 1. As a result, we can write

cste)= [ Xld (7,

c &) =Pl 2ape-qgydri- (A1)
¢ i=1

We note that the Consumer Surplus expressions for
the H and L rules, in Equations (10) and (11), have an
indicator term inside the integral which assigns a
weight to the marginal utility. This term varies depend-
ing on the allocation. Under the R rule, all (infinitesi-
mal) customers have the same likelihood of receiving
the item. This translates into having an allocation term

of min{1, i } for each product i. Then, the Con-

sumer Surplus for the R rule can be expressed as

. g
pi]mm{l, m}dﬂe,
(12)

CSR(e 2 d;

where C° is the path that follows a straight line from
0 to d(p, €). Intuitively, the allocation term inside the
integral in Equation (12) assigns a weight to the
marginal utility according to the ratio of available
quantities and demand. This allocation can be seen
as the limiting case of the H (or L) rule. A more
detailed explanation of this limit interpretation is
provided in the appendix.

As in section 2, the treatment can be extended to a
general allocation rule A. To this end, we need to
specify: ® an allocation function
AT 100, dj(p, €)] = [0, 1]" and (i) an integration
path C* represented by a parametnc function 7* from
0 to d(p, €) that satisfies for each i:

Ai(r*)drt =min{g,, di(p, €) }. (13)

CL‘
Equation (13) implies that the total number of allo-
cated units for each product is equal to the minimum
between demand and supply. As a result, we obtain:'*

CSA(e z
Ci=1

Finally, the expected Consumer Surplus can be
obtained by taking the expectation over e:

E[CS*(e) / CS*(e)dF(e

As in the single-product setting, we can also derive
the above Consumer Surplus definitions from a utility
perspective (the details are omitted). As before, the
Consumer Surplus under the different allocation rules
satisfies the following ordering.

QPbservationy o For any A, p, q, €, and C* defined by
r¢, the following holds:

CSt(e) < CS%(e) < CSH (e).

The proof of Observation 2 can be found in the
appendix. Consequently, we have E[CS"(e)] <
E[CS%(e)] <E[CS" (¢)].

As we can see, the Consumer Surplus for multiple
products under stochastic demand depends on the
noise realization and on the allocation rule. When
supply exceeds demand, there is no stock-out and we
are back to the deterministic case. However, when



Cohen, Perakis, and Thraves: Consumer Surplus Under Demand Uncertainty
Production and Operations Management 31(2), pp. 478-494, © 2021 Production and Operations Management Society 489

demand exceeds supply, some consumers may not be
served. In this case, the allocation rule will determine
which customers are served, hence allowing us to
properly compute the Consumer Surplus. As men-
tioned, the allocation rule is related to the order in
which customers are served for a particular product.
For example, the H rule translates to first serving the
customers with the highest valuations.

3.2.1. Example. We next present a concrete exam-
ple with two products and compute the Consumer
Surplus under the three different allocation rules. We
consider a linear demand function with an additive
noise of the form d(p, €) = d — Bp + € that satisfies the
conditions mentioned at the beginning of section 3,"
and we denote by p® and q° the given price and quan-
tity vectors. Table 1 reports the Consumer Surplus
values under a specific noise realization. As we can
see, the value of the Consumer Surplus highly
depends on the allocation rule.

Having defined the Consumer Surplus for a general
allocation rule under stochastic demand for multiple
products, we next compare the expected Consumer Sur-
plus to the deterministic setting. We show that the
impact of demand uncertainty on consumers depends
on several factors such as the convexity properties of
the demand, the noise structure, and the allocation rule.

3.3. Impact of Demand Uncertainty on Consumers

In this section, we extend the analysis and results for
multiple products. If the different products are inde-
pendent (i.e., no cross-item effects), one can extend
the results from the single-product case by simply
computing the Consumer Surplus for each product
separately and summing up the n terms. Neverthe-
less, the most interesting case is when the demand of
each product depends on both its own price and the
prices of other products (i.e., the price of product i
also affects the demand of products j # 7).

3.3.1. Exogenous Pricing. We consider a setting
with n products and set the (exogenous) price vector
to pO. As before, when demand is deterministic, the
production quantities are set to match the nominal
demand, namely, q°=d(p°). Under stochastic
demand, the supplier produces quantities q**® which

Table 1 Consumer Surplus Values for the Different Allocation Rules.
Parameters: 31 =10, Bz =7, Biy=By =1, By =By =
—0.25, €1 = 1, € = 0, P= 4, P = 2, d1 = 75, dz = 6,
g, =6.5,and g, = 6

Rule Cs

High 60.667
Low 52.133
Random 56.400

do not necessarily match d(p°). As in the single-
product case, we consider both multiplicative and
additive noises and start with the setting where the
prices are the same.

ProrosimioN 5. Consider a stochastic demand function
with a multiplicative noise and q**° = d(p°). Then, under
any allocation rule A, we have

E[CS*(e)] < CSat-

We next consider a demand model with an additive
noise.

ProrosiTioN 6. Consider n products and a stochastic
demand function with an additive noise. We then have
the following results:

® L rule: if ¢*° <d(p°)

E[CS" (£)] < CSet.

® R rule: If d;'(-) is concave for all i€ {1, ..., n},
and if q*° < d(p")

E[CS"(€)] < CSu-

® H rule: Consider a linear demand (.., d = d—
Bp + €) with independent and symmetric noises. If
q**° > d(p®) and 3Dg1—B' is positive semi-
definite, where Dg" is the diagonal matrix with the
diagonal elements of B™*, then

E[CS" (¢)] 2 CS -

We note that for the H rule, the Consumer Sur-
plus inequality obtained in the single-product set-
ting holds only under more restricted conditions
(linear demand with independent and symmetric
noises plus an additional technical condition). The
technical condition outlined for the H rule in
Proposition 6 is always satisfied for n <3. To
ensure that demand values remain non-negative,
we consider formally imposing a non-negativity
demand constraint for the case of an additive noise
under the L or R rule. We then show that the
results still hold after imposing such a non-
negativity constraint (see more details in the proof
of Proposition 6 in the appendix). In summary, we
have shown that in many cases, demand uncer-
tainty hurts consumers. Our results also suggest
that ignoring uncertainty may severely impact the
Consumer Surplus value. In section 3.4, we will
show that for a linear demand with an additive
noise, under the R rule, the expected Consumer
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Surplus can be as far as 50% from the deterministic
setting.

3.3.2. Endogenous Pricing. As in the single-
product setting, we next consider the case with
endogenous prices. In particular, we look at the case
where 71 firms compete in a price-newsvendor setting.
Note that the deterministic demand case can be seen
as a special case when the quantities to produce
exactly match the demand at the equilibrium price.
Each firm i has a marginal cost ¢; and solves the fol-
lowing problem:

max p,E[min{di(p, &), q;}] - cig;.

To the best of our knowledge, the counterpart of
Lemma 1 for multiple products has not been previ-
ously established. It seems that such a general result
cannot be derived due to the lack of tractability. To
gain analytical tractability, we consider the case of a
linear demand model with either an additive noise
(ie., d(p, €) =d — Bp + € with E[¢] = 0) or a multi-
plicative noise (i.e., d(p, €) = e(d — Bp) with E[e] = 1)
and derive this result in Lemma 2 below. The out-
come of this model with an additive noise has been
studied in Chen et al. (2004) and Zhao and Atkins
(2008).'* We denote (p°, q°) the equilibrium price
and quantity vectors. The first-order condition over
the quantities leads to qi=d;— 2By +F; (p : C’),
where F;(-) is the cdf of ¢;. Then, the first-order Con—
dition over the prices leads to the following fixed-
point equation: ¥(p®) +d —Bp — D(p® —c) =0, where
¥;(p®) = E[min{e;, F[l(%)}] and DeR"™" is a diag-
onal matrix with the diagonal elements of B in its
diagonal and zero elsewhere. Equivalently, ¥(p*)
can be written as W(p®) = E[min{d(p®, ), q*}] —d(p*®),
thus corresponding to the expected difference
between sales and demand. In the special case of
a deterministic demand, the equilibrium prices can
be obtained in closed form as pi=
c+(B+D) '(d—Bc).

Lemma 2. Consider a linear demand function. Under an
additive noise p > p®, whereas under a multiplicative
noise p4 < p°.

Thus, Lemma 2 extends the result of Lemma 1 for
multiple products under linear demand. The next two
propositions state the results for multiplicative and
additive demand cases.

ProrosiTiON 7. For a linear demand function with an
multiplicative noise, we have

E[CS"(£)] < CSyer.

ProrosiTioN 8. For a linear demand function with an addi-
tive noise, if 3Dg 1 — B! is positive semi-definite, we have

E[CS" (¢)] 2 CS -

As in the single-product setting, the inequalities for
the R and L rules presented for the case of endogenous
prices (see Proposition 6) where consumers are better
off in the deterministic setting, do not hold anymore
under endogenous prices. Indeed, when prices are
endogenously determined, the firms will charge a
higher price in the deterministic case, as stated in
Lemma 2. It can thus offset the Consumer Surplus
inequality. We conclude this section by presenting a
plot of the Consumer Surplus ratio (stochastic divided
by deterministic) as a function of the demand uncer-
tainty magnitude for the different settings (see Fig-
ure 5). Ultimately, our model and results allow us to
quantify the impact of the demand uncertainty magni-
tude on the Consumer Surplus. For example, depend-
ing on the extent of the Consumer Surplus loss, firms
can invest efforts in collecting additional data and in
developing more sophisticated demand prediction
methods to ultimately reduce demand uncertainty.

3.4. Analytical Bounds for Linear Demand

To draw additional insights on the comparison of the
Consumer Surplus under stochastic and deterministic
demand, we consider the special case of linear
demand with an additive noise. For simplicity, we
assume that all n products are symmetric and that
q = d(p), that is, production quantities exactly match
the nominal demand, and we consider the random
allocation rule. More precisely, the demand function
for the n products is given by:

d(p,e)=d—Bp+e. (15)
In this case, we arrive at the following expressions:

B71
T
B (p),

-1
= [min{q, d(p, ) -, ),

CSaet =d(p)]
CSR(e)

where the first (resp. second) equation corresponds
to the Consumer Surplus for deterministic (resp.
stochastic) demand. Recall that under stochastic
demand, the Consumer Surplus becomes a random
variable, so we are interested in E[CS(e)].

Since we assume that all the products are symmet-
ric, the parameters d;, pi, and g; are identical for i =
1, ..., n. In addition, the matrix B is such that its diag-
onal elements are equal to b and its off-diagonal ele-
ments (cross-price sensitivity) are equal to -6 <0
(while satisfying the diagonal dominance condition
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Figure 5 Consumer Surplus ratio (stochastic divided by deterministic) as a Function of the Demand Uncertainty Magnitude for Linear Demand and
n = 2 ltems. Parameters: d1 :dz =5 B11=By=1,B=8By=-04,¢1=06=1, pP1=p = 3, and G =0 = 3.2
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b > (n — 1)8). Finally, we assume that the additive
noises, ¢;Vi=1,..., n, are iid with bounded sup-
port. In particular, we require that ¢; > —g; with prob-
ability 1. For example, €; can be uniformly distributed
in [-g,, qil.

To gain analytical tractability, we consider an addi-
tive iid noise with a two-point distribution (.e.,
& € {—A, A} each with probability 0.5, for some A < g,).
In this case, we have

1 -
CSaer :Ean2,
E[CSR(e)] :%n[éqz —05A(Bq—B; 1A)].

Here, B denotes the row sum of the matrix B! (un-
der symmetric products, all rows have the same
sum). Also, B;' and B; ! are the same for all i and
j #i. We next derive a bound on the ratio of the
expected Consumer Surplus wunder stochastic
demand relative to deterministic demand.

ProrosITION 9. Assume that demand is linear with an
additive noise distributed according to a two-point distri-
bution. Then, the following holds:

1. When the cross-price sensitivity § = 0 (i.e., inde-

pendent products), we have
E[CSR(e)] J7
Csdet — 8 ’

2. For any 0<6< % (i.e., substitutable products),
we have
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E[CSR(e)] 1 1
25+
Csdet 2 2n

To illustrate Proposition 9, we consider the example
with n=2,d=12,b=1,6=0, p=2, and q =12,
with noise realizations e¢; = =2 and ¢, = 2. In this
examele, we have CS,,; = 2q2/ 2=100 and
E[CS"(e)] = 0.5min{10, 8} x 8 +0.5min {10, 12} x12=
92, that is, a decrease of 8% relative to CS,,;. More
generally, Proposition 9 shows that when demand is
linear with an additive i.i.d noise (distributed accord-
ing to a two-point distribution), the expected Con-
sumer Surplus from the random allocation can be as
far as 50% from the deterministic setting.

4. Random Supply

We next examine the Consumer Surplus under
stochastic supply. We directly study the multiple-
product setting (the single-product setting can be
obtained as a special case).

4.1. Random Supply and Deterministic Demand

We consider a deterministic demand function d(p)
with a fixed vector p. The supply is random and rep-
resented by the function s(p, 6) such that
E[s(p, 6)]=d(p). As in the case of random demand,
an additive supply uncertainty can be expressed as
s(p, 8) = d(p) + & with E[§] =0, whereas a multiplica-
tive supply uncertainty follows s;(p, ) = §;d;(p) with
E[5]=1 and §; > 0. Unlike the stochastic demand
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setting, stochastic supply allows for multiple random
variables under a multiplicative uncertainty.

ProrositioN 10.  Under a stochastic supply function s
(p, 8) so that E[s(p, 8)] = d(p), we have

E[CS"(6)] < CSy

Interestingly, we show that regardless of the type of
noise (additive or multiplicative), the expected Con-
sumer Surplus under stochastic supply is always
lower relative to its deterministic counterpart. We
next consider the general setting where both demand
and supply are stochastic.

4.2. Random Supply and Random Demand
When both demand and supply are stochastic, the
results will depend on the noise structure.

ProrositioN 11.  Under multiplicative demand and sup-
ply uncertainties, we have

E.s[CS" (e, 6)] < CS™.

Here, the expectation is taken with respect to both
noises’ distributions. Interestingly, the result of
Proposition 11 allows for correlated noises. As
expected, the uncertainty will reduce the value of the
expected Consumer Surplus for any allocation rule,
when the noise is multiplicative.

ProrosiTioN 12.  Under additive demand and supply
uncertainties, if d; U is concave, we have

E.5[CSt (e, 6)] < CS™,
Ee5[CSR (e, 6)] < CS™.

Proposition 12 shows that the expected Consumer
Surplus is lower under a stochastic setting for both
the L and R rules, if d; ' is concave and the noises are
additive. For the H rule, we identified examples
where the inequality can go either way. Overall, this
section shows that having an uncertain supply will
most often hurt consumers in terms of Consumer
Surplus.

5. Conclusions

A well-known concept to measure customer welfare
is the Consumer Surplus. This tool was primarily
developed assuming that the demand is deterministic
and that products are always available. In most real-
world settings, however, demand is modeled as a

stochastic function of the price. While many tradi-
tional OM studies have focused on firms, several
recent lines of research also account for consumers.
This is especially true in sustainable operations,
where customer welfare is of primary importance
(e.g., Avci et al. 2014, Chemama et al. 2019, Sunar and
Plambeck 2016). In this context, policy makers are
often interested in assessing the impact of policies on
consumers. The relevant question is then whether the
standard (presumably deterministic) approach to cal-
culate the Consumer Surplus may end up miscalculat-
ing customer welfare.

Demand uncertainty or errors in demand predic-
tion may lead to stock-outs. In such a case, consumers
who want to purchase the product may not be served,
hence ultimately affecting customer welfare. We pro-
pose an extension of the Consumer Surplus which
accounts for demand uncertainty and stock-outs. We
first introduce a mathematical definition of an alloca-
tion rule and then present a definition of the Consumer
Surplus under stochastic demand for multiple prod-
ucts and any allocation rule. We next use this defini-
tion to study the impact of demand and supply
uncertainty on consumers. We show that demand
uncertainty often hurts consumers. For example, under
a demand with a multiplicative noise, consumers are
always better off in the deterministic setting. Interest-
ingly, this result holds for any demand function, noise
distribution, and allocation rule. Under an additive
demand noise, we show that the impact of uncertainty
crucially depends on the allocation rule and on the
convexity properties of the demand.

In several settings, the most practical allocation rule
is the random rule, that is, consumers arrive ran-
domly and are served independent of their valua-
tions. For this rule, we show that consumers are
typically worse off under stochastic demand. We
show that when demand is linear with an additive
iid noise, the expected Consumer Surplus under the
random allocation can be as far as 50% relative to the
deterministic setting. One possible way to mitigate
this Consumer Surplus loss is by using a sharing
mechanism. For example, a supplier can share its
excess capacity (or demand) for products among its
different stores. Alternatively, competing firms may
engage in a sharing inventory agreement, which can
ultimately benefit consumers by increasing the Con-
sumer Surplus under stochastic demand.

In this paper, we assumed that the substitution
among products is captured by the cross-price terms
in the demand function. In the appendix, we consider
and analyze an alternative model that explicitly incor-
porates substitution into the consumer utility-
maximization problem by accounting for inventory
constraints. This modeling framework naturally leads
to a model in which the outcome consumption results
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in a demand function that allows for substitution
among products when stock-outs occur. Interestingly,
this alternative utility model leads to the same results
and insights regarding the impact of demand uncer-
tainty on Consumer Surplus, hence supporting that
our results are robust to the specific way of capturing
substitution among products.

This paper is far from providing the last word on
the topic of Consumer Surplus in stochastic settings
and opens several opportunities for future research.
For example, an interesting extension is to consider a
model where the stochastic demand term depends on
the price. Using the methodology developed in this
work, one can compute the Consumer Surplus for set-
tings with stochastic demand. Since customer welfare
plays a growing role in many applications, one can
use the tools presented in this paper to study and
quantify the potential impact of government policies
on consumers.
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Notes

n this paper, we consider a setting where prices and
quantities are set prior to the demand realization, as in
the newsvendor problem.

’With a slight abuse of notation, we denote by d(p,e) the
stochastic demand function and by d(p) its deterministic
part. Namely, if the only argument is the price, we refer
to the latter, whereas if the argument is composed of a
price and a random variable ¢, we refer to the former.
*The Marshallian demand function explicitly depends on
price and income: it corresponds to the solution of the
utility-maximization problem solved by a representative
consumer who maximizes utility subject to a budget con-
straint. The Hicksean demand depends on price and utility:
it is obtained as the solution of the expenditure-
minimization problem solved by a representative consumer
subject to a constraint on the minimum utility level.

*We assume that the nominal demand function is strictly
decreasing so that its inverse exists. However, this
assumption can be relaxed without altering our results.
Indeed, if there is a countable disjoint set of intervals
where the demand has a zero slope, then the integral in
Equation (1) will have zero measure over those points.

°In our context, an allocation function refers to a way of
mathematically expressing how available units are dis-
tributed to consumers. This is the reason why we use
demand (quantity) as the argument of the allocation func-
tion. Given the monotonicity of the inverse demand, we
can equivalently characterize an allocation by using the
valuation (price) space, allowing us to map allocation
functions to the willingness to pay of consumers.

®More precisely, A is a family of allocation functions para-
metrized by (p, g, €). We omit these arguments to lighten
our notation. However, our analysis carefully accounts for
this dependence.

’Equivalently, the integral in Equation (3) can be
expressed by integrating over the price space, that is,
CS%e) = ;,,m, 4100 —PIAW(v, £))dd(v, €). We choose to
present our analy51s by integrating on the quantity space
as it allows us to develop sharper insights given that (i)
the allocation function is a mapping from the quantity
space and (ii) we can rely on the interpretation of valua-
tions through the inverse demand.

8As in section 2, we impose these assumptions for ease of
exposition but our results still hold under more general
demand functions, such as discontinuity and lack of dif-
ferentiability in countable disjoint sets.

?As mentioned in section 2, the underlying utility function
is assumed to be quasilinear and, hence, the demand is
only a function of price (and € in the stochastic case).

9The Slutsky conditions are satlsfled if the demand cross-
derivatives are equal (i.e., ‘)d‘ =% for all i # n-

"'To simplify notation, we s1rnply write r* omitting the
arguments q, p, and e.

2As in section 2, the integral in Equation (14) can be
equivalently expressed by integrating over the price space,
namely, CS™(e) = [ X;[st —piJAi(d(s?, €))ddi(s®, €), where
s=d (1, ¢) is the parametrlc functlon that corresponds
to C' and goes from p™>*:=d"'(0, ) to p (this equivalence
holds for any allocation rule).

3In this case, it suffices to require d > 0 and that B is a
symmetric strictly diagonal dominant Z-matrix (i.e., the
off-diagonal entries are less or equal than zero).

%To ensure that the equilibrium is unique, it is enough to
assume that 27}:13,7- is greater than 1/[cf(—A)], where f(-) is
the pdf of ¢; and A; is the minimum value in the support of ¢;.
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