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Appendix Roadmap

This appendix contains five sections. Appendix A reports the Nash equilibria for Bertrand competition games

with homogeneous customers, asymmetric capacities and differentiated qualities. Appendix B presents two

major proofs under low demand, demonstrating the mechanisms at play throughout the paper. Appendix C

connects the pooled capacity and pro rata capacity allocation cases under discriminatory pricing, justifying

our focus in the paper on pro rata capacity allocation. Appendix D establishes the robustness of our find-

ings under moderate demand. Appendix E includes a sensitivity analysis for the parameter α. Collectively,

this appendix paints a complete picture of Bertrand competition games under heterogenous customers and

endogenous inventory allocation. The Electronic Companion includes remaining proofs and extensions.

Appendix A: Full Equilibrium Characterization for Homogeneous Markets

Table 2 provides a full characterization of the Nash equilibrium for the Bertrand competition game in

homogeneous markets under asymmetric capacities and differentiated qualities. Regions U0 to U6 define

cases with homogenous QSC (i.e., D =Du, Di =Du
i , and Iui = Ii for i ∈ {1,2}), whereas Regions P0 to P5

define cases with homogenous PSC (i.e., D = Dp, Di = Dp
i , and Ipi = Ii for i ∈ {1,2}). Propositions 1 and

2 are two special cases of Table 2, where the firms have the same capacities. For conciseness, we focus on

Regions U0 to U6 (P0 to P5 are special cases with ∆ = 0) and relegate all the proofs to EC.1.

Table 2 Equilibrium profits under quality differentiation and asymmetric capacities. We define 13 regions,

seven with QSC (U0 to U6) and six with PSC (P0 to P5).

Region Π1 Π2 Definition

U0 I1pmax I2pmax D≥ I1 + I2

U1 0 D∆ D< min

{
1

1− ∆
pmax

I1, I2

}
U2 (D− I2)pmax I2pmax D>

(
1− ∆

pmax

)
I1 + I2 or pmax

∆
I2 ≤D< I1

U3 (D− I2)pmax I2

(
D−I2

I1
pmax + ∆

) I1 < I2 ≤D and I1 + I2− ∆

pmax

I1I2
I2−I1

≤D<
(

1− ∆

pmax

)
I1 + I2;

or I2 < I1 ≤D<
(

1− ∆

pmax

)
I1 + I2

U4 (D− I2)pmax I2

(
D−I2

D
pmax + ∆

)
I2 <D< min

{
I1,

pmax
∆

I2

}
U5 I1

(
D−I1

I2
pmax−∆

)
(D− I1)pmax I1 < I2 ≤D< I1 + I2− ∆

pmax

I1I2
I2−I1

U6 I1

(
D−I1

D
pmax−∆

)
(D− I1)pmax

1

1− ∆
pmax

I1 <D< I2

P0 I1pmax I2pmax D≥ I1 + I2

P1 0 0 D≤min{I1, I2}
P2 (D− I2)pmax

I2
D

(D− I2)pmax I2 ≤D≤ I1

P3
I1
D

(D− I1)pmax (D− I1)pmax I1 ≤D≤ I2

P4 (D− I2)pmax
I2
I1

(D− I2)pmax I2 ≤ I1 ≤D

P5
I1
I2

(D− I1)pmax (D− I1)pmax I1 ≤ I2 ≤D

U0: D≥ I1 + I2. The Nash equilibrium is (p1, p2) = (pmax, pmax), so Π1 = I1pmax and Π2 = I2pmax.

U1: D≤min{ 1
1− ∆

pmax

I1, I2}. We divide the analysis into three cases.

– If D<min{I1, I2}. This is the uncapacitated case, so the Nash equilibrium is the same as in Section 3.2:

QF1
(0) = 0, F1(p1)≥ 1− ∆

p1+∆
, for all p1 ≤ pmax−∆, QF2

(∆) = 1,

Π1 = 0, Π2 =D∆.
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– If I1 <D< I2,D < 2I1, we have

π1(p1, F2) = p1

[
I1− I1F2(p1 + ∆) + D

2
QF2

(p1 + ∆)
]
,

π2(p2, F1) = p2

[
D− I1F1(p2−∆) + (I1− D

2
)QF1

(p2−∆)
]
.

The Nash equilibrium is characterized by:

QF1
(0) = 0, F1(p1)≥ D

I1

(
1− ∆

p1+∆

)
, for all p1 ≤ pmax−∆,

QF2
(∆) = 1,
Π1 = 0, Π2 =D∆.

– If 2I1 ≤D< I2, we have

π1(p1, F2) = p1[I1− I1F2(p1 + ∆) + I1QF2
(p1 + ∆)],

π2(p2, F1) = p2[D− I1F1(p2−∆)].

The Nash equilibrium is once again characterized by:

QF1
(0) = 0, F1(p1)≥ D

I1

(
1− ∆

p1+∆

)
, for all p1 ≤ pmax−∆,

QF2
(∆) = 1,
Π1 = 0, Π2 =D∆.

Note that whether or not 2I1 <D (or 2I2 <D) does not affect the equilibrium profits, because the mixed

strategies have at most one atom at pmax, and the demand sharing at p1 + ∆ = p2 does not affect the

equilibrium profits. We thus thereafter omit the distinction between 2I1(or 2I2) is larger than D, so we just

assume that whenever I1 <D (or I2 <D), we have 2I1 >D (or 2I2 >D).

U2: D≥
(

1− ∆
pmax

)
I1 + I2 or pmax

∆
I2 ≤D< I1.

– If D≥
(

1− ∆
pmax

)
I1 + I2, then (D− I2)pmax ≤ I1(pmax−∆), meaning that Firm 1 is always better off

playing pmax. Consequently, Firm 2 will also play pmax.

– If pmax

∆
I2 ≤D< I1, then (D− I2)pmax ≤D(pmax−∆), meaning that Firm 1 is always better off playing

pmax. Consequently, Firm 2 will also play pmax.

U3: I1 < I2 ≤D<
(

1− ∆
pmax

)
I1 + I2 and ∆

pmax
≥ (I1+I2−D)(I2−I1)

I1I2
; or I2 < I1 ≤D<

(
1− ∆

pmax

)
I1 + I2.

– If I1 < I2 ≤D<
(

1− ∆
pmax

)
I1 + I2 and ∆

pmax
≥ (I1+I2−D)(I2−I1)

I1I2
, we have:

π1(p1, F2) = p1

[
I1− (I1 + I2−D)F2(p1 + ∆) + (I2− D

2
)QF2

(p1 + ∆)
]
,

π2(p2, F1) = p2

[
I2− (I1 + I2−D)F1(p2−∆) + (I1− D

2
)QF1

(p2−∆)
]
.

The Nash equilibrium can then be characterized as follows:

F1(p1) =
I2−

I2(D−I2
I1

pmax+∆)
p1+∆

I1+I2−D
, p1 ∈

[
D−I2
I1

pmax, pmax−∆
]
, QF1

(pmax) =
I1−D+

I2(D−I2
I1

pmax+∆)
pmax

I1+I2−D
,

F2(p2) =
I1−

(D−I2)pmax
p2−∆

I1+I2−D
, p2 ∈

[
D−I2
I1

pmax + ∆, pmax

)
, QF2

(pmax) =
I2−D+

(D−I2)pmax
pmax−∆

I1+I2−D
,

Π1 = (D− I2)pmax, Π2 = I2

(
D−I2
I1

pmax + ∆
)
.

– If I2 < I1 ≤D<
(

1− ∆
pmax

)
I1 + I2, the profit functions are the same as before. Moreover, since I2 < I1,

∆
pmax
≥ (I1+I2−D)(I2−I1)

I1I2
, so that the previous mixed strategy still characterizes a Nash equilibrium.
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U4: I2 <D<min{I1, pmax

∆
I2}. We have

π1(p1, F2) = p1

[
D−DF2(p1 + ∆) + D

2
QF2

(p1 + ∆)
]
,

π2(p2, F1) = p2

[
I2− I2F1(p2−∆) + D

2
QF1

(p2−∆)
]
.

The Nash equilibrium is given by:

F1(p1) = 1−
D−I2

D
pmax+∆

p1+∆
, p1 ∈

[
D−I2
D

pmax, pmax−∆
]
, QF1

(pmax) = D−I2
D

+ ∆
pmax

,

F2(p2) =
D− (D−I2)pmax

p2−∆

I2
, p2 ∈

[
D−I2
D

pmax + ∆, pmax

)
, QF2

(pmax) =
I2−D+

(D−I2)pmax
pmax−∆

I2
,

Π1 = (D− I2)pmax, Π2 = I2
(
D−I2
D

pmax + ∆
)
.

U5: I1 < I2 ≤D< I1 + I2− ∆
pmax

I1I2
I2−I1

. This is equivalent to ∆
pmax

< (I1+I2−D)(I2−I1)

I1I2
. We have

π1(p1, F2) = p1

[
I1− (I1 + I2−D)F2(p1 + ∆) +

(
I2− D

2

)
QF2

(p1 + ∆)
]
,

π2(p2, F1) = p2

[
I2− (I1 + I2−D)F1(p2−∆) +

(
I1− D

2

)
QF1

(p2−∆)
]
.

The Nash equilibrium is given by:

F1(p1) =
I2−

(D−I1)pmax
p1+∆

I1+I2−D
, p1 ∈

[
D−I1
I2

pmax−∆, pmax−∆
]
,

F2(p2) =
I1−

I1(D−I1
I2

pmax−∆)
p2−∆

I1+I2−D
, p2 ∈

[
D−I1
I2

pmax, pmax

)
, QF2

(pmax) =
I2−D+

I1(D−I1
I2

pmax−∆)
pmax−∆

I1+I2−D
,

Π1 = I1

(
D−I1
I2

pmax−∆
)
, Π2 = (D− I1)pmax.

U6: 1
1− ∆

pmax

I1 <D< I2. The profit functions are the same as that in U1 with I1 <D<min(I2,2I1):

π1(p1, F2) = p1

[
I1− I1F2(p1 + ∆) + D

2
QF2

(p1 + ∆)
]
,

π2(p2, F1) = p2

[
D− I1F1(p2−∆) +

(
I1− D

2

)
QF1

(p2−∆)
]
.

The Nash equilibrium is given by:

F1(p1) =
D− (D−I1)pmax

p1+∆

I1
, p1 ∈

[
D−I1
D

pmax−∆, pmax−∆
]
,

F2(p2) = 1−
D−I1

D
pmax−∆

p2−∆
, p2 ∈

[
D−I1
D

pmax, pmax

)
, QF2

(pmax) =
D−I1

D
pmax−∆

pmax−∆
,

Π1 = I1
(
D−I1
D

pmax−∆
)
, Π2 = (D− I1)pmax.

Appendix B: Proofs of Main Results Under Low Demand

In this appendix, we prove Proposition 3, which characterizes the Nash equilibrium under uniform pricing,

and Proposition 7, which characterizes the Nash equilibrium under discriminatory pricing. These two proofs

demonstrate the mechanisms to prove the most results in this paper. All other proofs are relegated to

Electronic Companion. For notational convenience, let a= ∆
pmax
≤ 2

5
.

B.1. Proof of Proposition 3

We first establish in Lemma 1 (proved in EC.3) that the nonlinear system of Equations (1)–(2) admits a

unique positive (real) solution and then show that each firm has no incentive for unilateral deviations.

Lemma 1. The system of Equations (1)–(2) admits a unique positive (real) solution, such that:

p̂ <
Du

Dp

∆, (3)

p̃ <
Dp

Du

∆, (4)

p̂ ≤
(

1 +
Dp

Du

)
∆, (5)

p̃ ≤ Du

Dp

∆. (6)
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Proof that the solution given in Proposition 3 is a Nash equilibrium. We have:

p̃ < p̂ ⇐⇒ 1

p̃+ ∆
>

1

p̂+ ∆
,

⇐⇒ 1

p̂
− 1

p̂+ ∆

Dp

Du

>
1

p̂+ ∆
from Equation (1),

⇐⇒ p̂ <
Du

Dp

∆, which is satisfied from Equation (3).

Likewise, p̂ < p̃+ ∆ is guaranteed by Equation (4). Equations (1)–(2) guarantee the continuity of F1(p) in

p̂, and the continuity of F2(p) in p̃. We next show that there is no incentive for each player to deviate from

their supports, by showing that all the prices in the support of F1 (resp. F2) yield an expected profit of p̂Dp

(resp. (p̃+ ∆)Du), and that all the other prices yield a lower expected profit.

– For Firm 1:

– p1 ∈ [p̃, p̂]: π1(p1, F2) = p1 {D−DuF2(p1 + ∆)−DpF2(p1)}= p̂Dp.

– p1 ∈ [p̂, p̃+ ∆]: π1(p1, F2) = p1 {D−DuF2(p1 + ∆)−DpF2(p1)}= p̂Dp.

– p≤ p̂−∆: π1(p1, F2) = p1D ≤ (p̂−∆)D. Note that: (p̂−∆)D ≤ p̂Dp ⇐⇒ p̂≤
(

1 +
Dp

Du

)
∆, which

is satisfied from Equation (5). Therefore, π1(p1, F2)≤ p̂Dp.

– p̂ − ∆ < p1 < p̃: π1(p1, F2) = p1

[
D−Du

(
1− p̂

p1+∆

)]
= p1Dp + p̂Du

p1

p1+∆
. Note that p1Dp +

p̂Du
p1

p1+∆
is increasing in p1. Therefore: π1(p1, F2)≤ π1(p̃, F2) = p̂Dp.

– p̃+ ∆ < p1 < p̂+ ∆: π1(p1, F2) = p1

[
D−Du−Dp

D− Dpp̂

p1−∆

Du

]
=

D2
p

Du

[
p̂
(

1 + ∆
p1−∆

)
− p1

]
. Note that

D2
p

Du

[
p̂
(

1 + ∆
p1−∆

)
− p1

]
is decreasing in p1. Therefore: π1(p1, F2)≤ π1(p̃+ ∆, F2) = p̂Dp.

– p≥ p̂+ ∆: π1(p,F2) = 0< p̂Dp.

– For Firm 2: We repeat the same steps to check Firm 2’s profit function in each of the six intervals,

– p2 ∈ [p̂, p̃+ ∆], – p2 ∈ [p̃+ ∆, p̂+ ∆], – p2 ≤ p̃, – p̃ < p2 < p̂, (i) p̂+ ∆< p2 < p̃+ 2∆, – p2 ≥ p̃+ 2∆, and

there is no incentive for Firm 2 to deviate.

Hence, the solution given in Proposition 3 is a Nash equilibrium, and the expected profits are given by:

Π1 = p̂Dp and Π2 = (p̃+ ∆)Du. �

To show the uniqueness of the Nash equilibrium, we make use of the following lemma (proved in EC.3),

which characterizes the supports of NE. Lemma 2 is one of the most technical results in this paper and relies

on a series of auxiliary results elicited in EC.3 (Lemmas EC.8–EC.15 and Corollaries EC.1 and EC.2).

Lemma 2. Both firms play mixed strategies with no atom and with supports given as: Supp(F1) = [p̃, p̃+∆]

and Supp(F2) = [p̂, p̂+ ∆].

Proof that the solution given in Proposition 3 is the unique Nash equilibrium. It only remains to show

that the structure of the Nash equilibrium stated in Proposition 3 is necessary. Since p̂ ∈ Supp(F1) and

p̃+ ∆∈ Supp(F2), we have:

Π1 = π1(p̂, F2) = p̂[D−DuF2(p̂+ ∆)−DpF2(p̂)] = p̂Dp,
Π2 = π2(p̃+ ∆, F1) = (p̃+ ∆)[D−DuF1(p̃)−DpF1(p̃+ ∆)] = (p̃+ ∆)Du.

– For each p∈ [p̃, p̂]: Π1 = π1(p,F2) = p1[D−DuF2(p+ ∆)]. It comes: F2(p+ ∆) =
D−Π1

p

Du
.
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– For each p∈ [p̂, p̃+ ∆]:
Π1 = π1(p,F2) = p[D−Du−DpF2(p)],
Π2 = π2(p,F2) = p[D−DpF1(p)].

We thus have F2(p) = 1− Π1

pDp
and F1(p) =

D−Π2
p

Dp
.

– For each p∈ [p̃+ ∆, p̂+ ∆]: Π2 = π2(p,F1) = p[D−DuF1(p−∆)−Dp]. It comes: F1(p−∆) = 1− Π2

pDu
.

This completes the proof. �

B.2. Proof of Proposition 7

For ease of exposition, we restrict to the case where D = I = Iu1 + Ip1 = Iu2 + Ip2 (the general case where

D< I is addressed in Remark 1 below). We consider the “U-regions” and the “P-regions” defined in Table 2.

When (Iu1 , I
u
2 ) falls into a certain U-region, (Ip1 , I

p
2 ) = (I− Iu1 , I− Iu2 ) falls into a certain P-region accordingly.

Figure 11 represents the regions in a two-dimensional plane (Iu1 , I
u
2 ) (Dp, Du, and ∆

pmax
are given). The solid

black lines define the six U-regions, and the dashed lines define the five P-regions.

Figure 11 Illustration of the regions when D= I.

Let us start with an important fact: the horizontal line Iu2 = 1+a
2
Du will never intersect Region U5. To see

this, note that U5’s lower bound is defined by the hyperbola
Du−Iu1
Iu2
− Du−Iu2

Iu1
= a. To seek the lowest point of

this hyperbola, we take the derivative with respect to Iu1 and set
dIu2
dIu1

= 0:

−Iu2 −(Du−Iu1 )
dIu2
dIu1

(Iu2 )2 −
−dIu2
dIu1

−(Du−Iu2 )

(Iu1 )2 = 0 =⇒ Du−Iu2
(Iu1 )2 − 1

Iu2
= 0.

Combining the above with
Du−Iu1
Iu2
− Du−Iu2

Iu1
= a, we obtain the expression of the lowest point:{

Iu1 =
Du−aIu2

2
,

Iu2 = Du

a+2−2
√
a
.

It can now easily be shown that Du

a+2−2
√
a
≥ 1+a

2
Du.

We examine the profit functions Π1 = Π
u

1 + Π
p

1 and Π2 = Π
u

2 + Π
p

2 in each region:

1. [U0P1]: Π1 = Iu1 pmax and Π2 = Iu2 pmax. Firm 2 deviates to U2P1.
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2. [U1P0]: Π1 = Ip1pmax and Π2 = Ip2pmax +Du∆. Firm 1 deviates to U6P2.

3. [U1P2]: Π1 = (Dp− Ip2 )pmax and Π2 =
I
p
2

Dp
(Dp− Ip2 )pmax +Du∆. Firm 1 deviates to U6P2.

4. [U1P4]: Π1 = (Dp− Ip2 )pmax and Π2 =
I
p
2

I
p
1

(Dp− Ip2 )pmax +Du∆. Firm 1 deviates to U6P2.

5. [U1P5]: Π1 =
I
p
1

I
p
2

(Dp− Ip1 )pmax and Π2 = (Dp− Ip1 )pmax +Du∆. Firm 2 deviates to U4P3.

6. [U2P1]: Π1 = (Du− Iu2 )pmax and Π2 = Iu2 pmax. Firm 1 deviates to U2P3 or to U4P3.

7. [U2P3]: Π1 =
I
p
1

Dp
(Dp− Ip1 )pmax + (Du− Iu2 )pmax and Π2 = (Dp− Ip1 )pmax + Iu2 pmax. Firm 2 deviates to

U4P3.

8. [U3P1]: Π1 = (Du− Iu2 )pmax and Π2 = Iu2

(
Du−Iu2
Iu1

pmax + ∆
)

. Firm 1 deviates to U4P3.

9. [U4P3]: Π1 =
I
p
1

Dp
(Dp − Ip1 )pmax + (Du − Iu2 )pmax and Π2 = (Dp − Ip1 )pmax + Iu2

(
Du−Iu2
Du

pmax + ∆
)

. By

the first-order condition, the only equilibrium candidate is (Iu1 , I
u
2 ) =

(
I − Dp

2
, 1+a

2
Du

)
. We next check

whether there is any profitable deviation:

– Given Iu1 = I− Dp

2
, if Firm 2 deviates, the best choice would be Iu2 = I− Dp

2
in U1P5, which yields

Dp

2
pmax +Du∆≤ Dp

2
pmax + ( 1+a

2
)2Dupmax. Thus, Firm 2 does not deviate.

– Given Iu2 = 1+a
2
pmax, Firm 1 has no incentive to deviate.

Therefore, (Iu1 , I
u
2 ) = (I − Dp

2
, 1+a

2
Du) is an equilibrium.

10. [U5P1]: Π1 = Iu1

(
Du−Iu1
Iu2

pmax−∆
)
pmax and Π2 = (Du− Iu1 )pmax. Firm 2 deviates U6P2.

11. [U6P2]: Π1 = (Dp− Ip2 )pmax + Iu1

(
Du−Iu1
Du

pmax−∆
)
pmax and Π2 =

I
p
2

Dp
(Dp− Ip2 )pmax + (Du− Iu1 )pmax.

By the first-order condition, the only equilibrium candidate is (Iu1 , I
u
2 ) =

(
1−a

2
Du, I − Dp

2

)
. We next

check whether there is any profitable deviation:

– Given Iu2 = I − Dp

2
, Firm 1 has no incentive to deviate.

– Given Iu1 = 1−a
2
Du, Firm 2 obviously has no incentive to deviate to U5P1. Along the vertical

line Iu1 = 1−a
2
Du in U3P1, Firm 2’s profit, I2

(
Di−Iu2
Iu1

pmax + ∆
)

, is decreasing in Iu2 ; and in U2P1,

Firm 2’s profit, Iu2 pmax, is increasing in Iu2 . Thus, in order for (Iu1 , I
p
2 ) =

(
1−a

2
Du,

Dp

2

)
to be an

equilibrium, we need
Dp

4
pmax + 1+a

2
Dupmax ≥ Iu2 pmax when Iu2 =Du− (1− a) 1−a

2
Du, that is:

Dp

4
pmax + 1+a

2
Dupmax ≥

[
Du− (1−a)2

2
Du

]
pmax ⇐⇒ Dp

Du
≥ 2a(1− a).

Therefore, (Iu1 , I
u
2 ) =

(
1−a

2
Du, I − Dp

2

)
is an equilibrium if and only if

Dp

Du
≥ 2a(1− a).

In conclusion, EA = (I − Dp

2
, 1+a

2
Du), located in U4P3, is always a Nash equilibrium, and EB =(

1−a
2
Du, I − Dp

2

)
, which is located in U6P2, is a Nash equilibrium if and only if

Dp

Du
≥ 2a(1− a). �

Remark 1. For simplicity we have assumed that D = I. When D < I, the expressions of the equilibria

remain identical and the equilibrium profits do not change.

Appendix C: Pooled Capacity vs. Pro Rata Capacity Allocation

In the main paper, we studied uniform pricing with pooled capacity, discriminatory pricing with pro rata

capacity allocation, and discriminatory pricing with endogenous inventory allocation. In this appendix, we

discuss two other strategies: discriminatory pricing with pooled capacity and uniform pricing with pro rata

capacity allocation. In fact, these cases are either identical (under low demand) or generate similar insights

(under high demand) as those studied in the main paper.
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C.1. Low-Demand Regime: Equivalence of Pooled Capacity and Pro Rata Allocation

First, uniform pricing with pro rata capacity allocation is equivalent to uniform pricing with pooled capacity.

Under pro rata allocation, both firms allocate their capacities to each segment proportionally to its size.

Therefore, the inventory allocated by each firm to QSC is Iu1 = Iu2 = Du

D
I ≥ Du, whereas the inventory

allocated by each firm to PSC is given by Ip1 = Ip2 =
Dp

D
I ≥Dp. This implies that no firm faces a capacity

shortage in any of the two segments—exactly as in the pooled capacity case and unlike the endogenous

allocation case. The price competition game is thus identical to that under pooled capacity (Section 4.1).

Next, discriminatory pricing with pooled capacity is equivalent to discriminatory pricing with pro rata

capacity allocation. Under discriminatory pricing with pooled capacity, both firms have a total inventory I

across both segments and compete only on price. Let ppi and pui denote the price charged by Firm i to PSC and

QSC, respectively. The demand faced by each firm is identical to the demand under pooled capacity. Again,

under low demand, the inventory does not come into play, and the price competition is thus independent

across the two segments. Stated differently, the pricing decisions can be made independently on the PSC

segment and on the QSC segment, which is again equivalent to the case with pro rata capacity allocation.

C.2. High-Demand Regime

Under high demand, the game with discriminatory pricing and pooled capacity is underspecified under the

assumptions imposed in our paper. For instance, if pp1 < pp2 and pu1 + ∆< pu2 , Firm 1’s faces a demand of D

but a capacity of I <D. We would thus additional rationing rules across segments; in our example, Firm 1

can use up to min{Dp, I} for PSC and the rest for QSC, or min{Du, I} for QSC and the rest for PSC.

The case of uniform pricing with pro rata capacity allocation is defined as follows:

Ip1 = Ip2 =
I

D
Dp ∈ [0.5Dp,0.625Dp] and Iu1 = Iu2 =

I

D
Du ∈ [0.5Du,0.625Du].

The demand structure is given by:

D1(p1, p2) =



I if p1 + ∆< p2

Du

2
+ Ip1 if p1 + ∆ = p2

Du− Iu2 + Ip1 if p1 < p2 < p1 + ∆

Du− Iu2 +
Dp

2
if p1 = p2

D− I if p1 > p2

=



I if p1 + ∆< p2

I − ( I
D
− 1

2
)Du if p1 + ∆ = p2

I − ( 2I
D
− 1)Du if p1 < p2 < p1 + ∆

D
2
− ( I

D
− 1

2
)Du if p1 = p2

D− I if p1 > p2

and D2(p2, p1) =D−D1(p1, p2). The profit functions are given by:

π1(p1, F2) = p1

{
I −

(
2I
D
− 1
)
DuF2(p1 + ∆) +

(
I
D
− 1

2

)
DuQF2

(p1 + ∆)

−
(

2I
D
− 1
)
DpF2(p1) +

(
I
D
− 1

2

)
DpQF2

(p1)

}
π2(p2, F1) = p2

{
I −

(
2I
D
− 1
)
DuF1(p2−∆) +

(
I
D
− 1

2

)
DuQF1

(p2−∆)

−
(

2I
D
− 1
)
DpF1(p2) +

(
I
D
− 1

2

)
DpQF2

(p1)

}
.

Proposition 16. The following mixed-strategies form a Nash equilibrium under uniform pricing with pro

rata capacity allocation (the proof mirrors that of Proposition 10):

F1(p) =
I − Π

UF−PR
2

p

( 2I
D
− 1)Dp

, p∈ [p, pmax],
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F2(p) =
I − ( 2I

D
− 1)Du− Π

UF−PR
1

p

( 2I
D
− 1)Dp

, p∈ [p, pmax),

QF2
(pmax) = 1− lim

p→pmax+
F2(p),

where Π
UF−PR
1 = [I− ( 2I

D
−1)Du]p=

[D−I+( 2I
D
−1)Du][I−( 2I

D
−1)Du]

I
pmax and Π

UF−PR
2 = [D− I+ ( 2I

D
−1)Du]pmax

are the expected profit and p=
Π

UF−PR
2

I
.

Comparing the profit expressions (shown in Figure 12) yield the following insights:

� Under uniform pricing (with pooled capacity or pro rata capacity allocation), Firm 1 benefits from a

more heterogeneous market, whereas Firm 2 benefits from a larger QSC customer pool. This extends

our result on the market frictions introduced by quality differentiation and customer heterogeneity.

� Under pro rata capacity allocation, Firm 2 is indifferent between uniform and discriminatory pricing,

whereas Firm 1 is strictly better off under uniform pricing. This further emphasizes the market friction

brought by customer heterogeneity, which benefits the firm with the lower-quality product. Discrimina-

tory pricing removes the customer heterogeneity friction and, under pro rata capacity allocation, does

not introduce extra friction from capacity restrictions—which results in lower profits for Firm 1.

� Uniform pricing (with pooled capacity or pro rata capacity allocation) can benefit Firm 1 relative to

price discrimination (with pro rata and even endogenous allocation). This confirms the joint roles of

market frictions from quality differentiation, customer heterogeneity, and capacity restrictions.

(a) Firm 1 (b) Firm 2

Figure 12 Expected profits as functions of Du (parameters: D= 24, I = 15, ∆ = 6, and pmax = 15).

Appendix D: Heterogeneous Market: Moderate-Demand Regime

We study the case where I < D <
(

2− ∆
pmax

)
I. As we shall see, our insights derived under low and high

demand hold will be robust to customer demand and market capacity.
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D.1. Complexity of the Problem Under Moderate Demand

The characterization of the Nash equilibria becomes much more intricate under moderate demand than

under low and high demand—both under uniform pricing and under discriminatory pricing. Under uniform

pricing, Firm 1’s profit when playing p1 depends on Firm 2’s mixed strategy both at p1 and at p1 + ∆;

similarly, Firm 2’s profit when playing p2 depends on Firm 1’s mixed strategy both at p2 and at p2−∆:

π1(p1, p2) =



p1× I if p1 + ∆< p2

p1×min
(
Du

2
+Dp, I

)
if p1 + ∆ = p2

p1×min (Dp + max(Du− I,0), I) if p2 < p1 + ∆< p2 + ∆

p1×min
(
Dp

2
+ max

(
Du +

Dp

2
− I,0

)
, I
)

if p2 < p1 + ∆< p2 + ∆

p1× (D− I) if p2 < p1 + ∆< p2 + ∆

π2(p1, p2) =



p2× (D− I) if p1 + ∆< p2

p2×min
(
Du

2
+ max

(
Dp + Du

2
− I,0

)
, I
)

if p1 + ∆ = p2

p2×min (Du + max(Dp− I,0), I) if p2 < p1 + ∆< p2 + ∆

p1×min
(
Dp

2
+Du, I

)
if p2 < p1 + ∆< p2 + ∆

p2× I if p2 < p1 + ∆< p2 + ∆.

This structure induces interdependencies throughout the interval [0, pmax]. Unlike under low and high

demand, the structure of the equilibrium varies drastically within sub-regimes, defined as a function of I,

pmax, Du, and Dp. For example, there exist cases where the support of each firm’s mixed strategy is the

union of several non-overlapping intervals. The exhaustive characterization of Nash equilibria over the entire

parameter space is analytically intractable under moderate demand. Similarly, under discriminatory pricing

with endogenous inventory allocation, the number of different combinations grows significantly as compared

to the already-complex high-demand regime. We therefore characterize Nash equilibria computationally.

D.2. Uniform Pricing

We discretize [0, pmax] into a finite set pk = k
N
pmax, for k= 0, ...,N . The resulting game has a finite strategy

space, and thus admits a (mixed-strategy) Nash equilibrium. We denote by x and y the probability vectors

characterizing Firm 1’s and Firm 2’s mixed strategies, and define two (N + 1)× (N + 1) matrices A and

B, where Akl = π1(pk, pl) and Bkl = π2(pk, pl) for all k, l= 0, · · · ,N . Then, (x∗,y∗) is a mixed-strategy Nash

equilibrium if and only if there exist λ∗, µ∗ such that (x∗,y∗, λ∗, µ∗) solves the following bilinear program:

max x>Ay +x>By−λ−µ
s.t. Ay≤ λ1, B>x≤ µ1,

x>1 = 1, y>1 = 1,
x≥ 0, y≥ 0,

where 1 denotes the (N + 1)-dimensional vector with all components equal to 1. At the equilibrium, the

expected profits of Firm 1 and Firm 2 are λ∗ = (x∗)>Ay∗ and µ∗ = (x∗)>By∗, respectively.

We could solve all instances of the above bilinear optimization problem in reasonable timeframes with

N = 400. We validated our discretization approach using low-demand and high-demand instances of the

problem, to verify that the solution coincides with the analytical Nash equilibria.

Figure 13 depicts both firms’ expected profits as functions of Du when D= 20, pmax = 13, and ∆ = 5, for

different values of I. When I > 20, the game falls into the low-demand regime; when I = 12, the game falls

into high demand; in-between, the game falls into moderate demand.
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(a) Firm 1 (b) Firm 2

Figure 13 Expected profits as functions of Du (parameters: D= 20, pmax = 13, and ∆ = 5).

Note, first, that for a given Du, each firm’s profit decreases with I: both firms are better off as the game

becomes more capacitated, which induces higher market frictions. Second, and most importantly, Firm 1’s

expected profit is highest when Du is close to (or equal to) D
2

, whereas Firm 2’s expected profit is increasing

with Du ∈ [0,D], confirming that Firm 2 benefits from quality sensitivity whereas Firm 1 benefits from

customer heterogeneity. Third, the impact of customer heterogeneity is more significant for high values of

I. Indeed, for small values of I, the market friction from capacity restrictions dominates the friction from

customer heterogeneity; vice versa, large values of I induce stronger frictions from customer heterogeneity.

D.3. Discriminatory Pricing

We now turn to price discrimination with endogenous inventory allocation. Again, we discretize each firm’s

strategy space, compute expected profits using Table 1, and determine the Nash equilibrium computationally.

Multiple equilibria exist in general, but one exists consistently across all parameter values—one where Firm 1

allocates most of its inventory to QSC and Firm 2 allocates most of its inventory to PSC. We still refer to

it as EA. Figures 14–16 depict both firms’ expected profits as functions of Du, under each strategy.

(a) Firm 1 (b) Firm 2

Figure 14 Expected profits as functions of Du (parameters: D= 16, I = 15, pmax = 15, and ∆ = 5).

Once again, most insights established under low and high demand still hold in the moderate-demand

regime, thus, establishing the robustness of our findings. Specifically, we observe the following:
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(a) Firm 1 (b) Firm 2

Figure 15 Expected profits as functions of Du (parameters: D= 20, I = 15, pmax = 15, and ∆ = 5).

(a) Firm 1 (b) Firm 2

Figure 16 Expected profits as functions of Du (parameters: D= 24, I = 15, pmax = 15, and ∆ = 5).

� When D = 16, which is slightly higher than the inventory I = 15, Figure 14 exhibits a similar pattern

to the low-demand regime (Figure 5), both in terms of profit variations and profit comparisons. Our

insights from the low-demand regime hold: price discrimination is not necessarily beneficial under

competition, but firms can increase their profits by combining discriminatory pricing with strategic

inventory allocation to strengthen market frictions. One difference with the low-demand case is that

uniform pricing no longer dominates discriminatory pricing with pro rata capacity allocation across the

entire space, an indication of the transition from low demand to high demand.

� When D= 20, Figure 15 shows that discriminatory pricing with endogenous capacity allocation remains

overall beneficial, but its benefits become smaller as demand increases.

� When D = 24, which is slightly lower than
(

2− ∆
pmax

)
I = 25, Figure 16 exhibits a similar pattern to

the high-demand regime (Figure 9). Again, our insights are preserved: (i) under price discrimination,

endogenous inventory allocation outperforms pro rata allocation, and (ii) there is no strict dominance

between the uniform and discriminatory pricing strategies. In fact, we now observe an additional region

where uniform pricing may outperform discriminatory pricing (even with endogenous capacity alloca-

tion) in the face of customer heterogeneity, which expands our insights derived under high demand.



Cohen, Jacquillat, Song: Price Discrimination and Inventory Allocation in Bertrand Competition
45

Appendix E: Sensitivity to α

Recall that we define the quality differential as ∆ = α(µ2 − µ1), so the parameter α governs the extent of

quality differentiation between Firm 1’s and Firm 2’s products. In this appendix, we conduct a sensitivity

analysis with respect to α, reported in Table 3.

Table 3 Sensitivity of firms’ profits as a function of the quality-sensitivity parameter α.

Demand Pricing Inventory Firm 1 profit Firm 2 profit Total profit

Low Uniform — increases with α increases with α increases with α
Discriminatory Pro rata indep. of α (zero) increases with α increases with α
Discriminatory Endogenous decreases with α increases with α increases with α

High Uniform — independent of α independent of α independent of α
Discriminatory Pro rata independent of α independent of α independent of α
Discriminatory Endogenous decreases with α increases with α increases with α

As α→ 0, the game converges to market homogeneity. It features (i) a low-demand regime where D ≤ I;

(ii) a moderate-demand regime where I <D< 2I; and (iii) a high-demand regime where D= 2I. A shrinking

quality differential makes the high-demand regime disappear, precisely because this regime was characterized

by the fact that both firms were able to leverage high demand and quality differences to charge high prices.

Under low demand, the game is characterized by the well-known price war, in which both firms earn zero

profit under uniform pricing or discriminatory pricing with pro rata inventory allocation. However, under

discriminatory pricing with endogenous inventory allocation, the firms can still create inventory shortages

through strategic rationing, thus creating market frictions and earning positive profits.

As α increases, the quality sensitivity of the relevant segment becomes stronger—namely, quality-sensitive

customers become “more quality sensitive.” One could expect that Firm 2 will benefit more from its quality

advantage. A second question is whether Firm 1’s profits will increase or decrease. The answer depends on

market demand and, most importantly, on the firms’ pricing strategies (see Figures 17–20 below):

– Under low demand and uniform pricing, both firms’ profits increase with α. Firm 2 increases its profits

by attracting quality-sensitive customers more easily. One could then expect that, conversely, Firm 1

will be hurt by stronger quality sensitivity. However, this is not the case. Again, this stems from the fact

that a higher value of α makes it harder for Firm 2 to serve both customer segments simultaneously:

stronger quality sensitivity creates incentives for Firm 2 to charge higher prices but higher prices

also hurt Firm 2’s ability to attract price-sensitive customers. Therefore, Firm 1 can exploit market

heterogeneity and increase its own profits. We can thus interpret a higher value of α as stronger quality

asymmetry—benefitting Firm 2—or as stronger customer heterogeneity—benefitting Firm 1.

– Under high demand and uniform pricing, both firms’ profits are independent of α. In that case, capacity

restrictions form the main market friction, and both firms play prices in [pmax−∆, pmax]. Firm 2 is still

able to exploit its quality differential and attract all quality-sensitive customers, thus earning a higher

profit than Firm 1. However, the firms’ strategies and profits are unaffected by α. Still, higher values of

α increase the incidence of the high-demand regime, characterized by D≥
(

2− ∆
pmax

)
pmax, increasing

the firms’ abilities to extract surplus from quality differentiation and inventory restrictions.
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– Under discriminatory pricing with pro rata inventory allocation, Firm 1’s profit is independent of α.

Indeed, this pricing strategy eliminates the market frictions from quality differentiation and customer

heterogeneity. Under low demand, it also eliminates market frictions from capacity restrictions, so

Firm 1 earns zero profit. Firm 2 still earns a positive profit by charging ∆, exploiting its quality

advantage to attract all quality-sensitive customers. Thus, Firm 2’s profit increases with α. Under high

demand, the competition is primarily driven by the market friction induced by capacity restrictions, as

opposed to quality differentiation, and both firms’ profits are unaffected by α.

– Under discriminatory pricing with endogenous inventory allocation, Firm 2’s profit increases with α and

Firm 1’s profit decreases with α. Again, price discrimination eliminates the market frictions induced by

quality differentiation and customer heterogeneity. Since this friction was the driving force behind the

positive impact of α on Firm 1’s profits under uniform pricing, a higher value of α is now detrimental

to Firm 1. In contrast, Firm 2’s profit is still increasing in α due to its quality advantage.

Let us detail these dynamics in Equilibrium EA. Under low demand, Firm 1 creates an inventory

shortage in the PSC segment and Firm 2 creates a shortage in the QSC segment for each firm to “focus”

on the segment where it has a more natural advantage. Price competition then unfolds independently in

the two segments. In the PSC segment, quality advantage does not play a role, so both firms’ profits are

independent of α. In the QSC segment, Firm 2 benefits from its higher-quality product—by allocating

more capacity to the QSC segment and charging higher prices. As a result, Firm 2’s profit increases in

α, whereas Firm 1’s profit decreases in α. The dynamics are similar under high demand except that

the higher capacity allocated by Firm 2 in the QSC segment creates a stronger shortage in the PSC

segment. As a result, Firm 1’s profit from PSC benefits from a higher α; nonetheless, a higher quality

differential still leads to lower profits for Firm 1 in the QSC segment, and lower overall profits.

(a) Firm 1 (b) Firm 2

Figure 17 Expected profits as functions of Du (parameters: D= 12, I = 15, pmax = 15, and ∆ = 2).

In summary, the sensitivity analysis with respect to the quality differential α yields two takeaways. First,

the quality differential has a different effect under uniform pricing vs. discriminatory pricing. Indeed, under

uniform pricing, a stronger quality differential benefits both firms: the firm with the higher-product quality

benefits from a more quality-sensitive customer pool, whereas the firm with the lower-quality product benefits
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(a) Firm 1 (b) Firm 2

Figure 18 Expected profits as functions of Du (parameters: D= 12, I = 15, pmax = 15, and ∆ = 6).

(a) Firm 1 (b) Firm 2

Figure 19 Expected profits as functions of Du (parameters: D= 28, I = 15, pmax = 15, and ∆ = 2).

(a) Firm 1 (b) Firm 2

Figure 20 Expected profits as functions of Du (parameters: D= 28, I = 15, pmax = 15, and ∆ = 6).

from a more heterogeneous customer pool. In contrast, under discriminatory pricing, a stronger quality

differential benefits the firm with the higher-product quality but hurts the firm with the lower-product

quality. Second, the quality differential has a different effect under discriminatory pricing with pro rata vs.

endogenous capacity allocation. Specifically, pro rata allocation alleviates the market frictions from capacity

restrictions, quality differentiation, and customer heterogeneity. Under endogenous capacity allocation, the

firm with the higher-quality product can create capacity shortages to exploit its advantage.


