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W e study a multi-period, multi-item dynamic pricing problem faced by a retailer. The objective is to maximize the
total profit by choosing prices, while satisfying several business rules. The strength of our work lies in our graphi-

cal model reformulation, which allows us to use ideas from combinatorial optimization. We do not make any assumptions
on the structure of the demand function. The complexity of our method depends linearly on the number of time periods
but is exponential in the memory of the model (number of past prices that affect current demand) and in the number of
items. We prove that the profit maximization problem is NP-hard by showing an approximation preserving reduction
from the weighted Max-3-SAT problem. We next introduce the discrete reference price model which is a discretized ver-
sion of the reference price model, accounting for an exponentially smoothed contribution of all past prices. We show that
our problem can be solved efficiently under this model. We then approximate common demand functions using the dis-
crete reference price model. To handle cross-item effects among multiple items, we propose to use a virtual reference
price that assigns a reference price for each category of items (as opposed to a reference price for each item). To enhance
the tractability of our approach, we cluster items into blocks and show how to adapt our method to include business con-
straints across blocks. Finally, we apply our solution approach using demand models calibrated with supermarket data
and validate its practical performance.
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1. Introduction

Pricing decisions play an important role in determin-
ing the profit of any commodity-based industry. In
supermarkets, dynamic pricing translates to promot-
ing the right product(s) at the right time using the
appropriate promotion depth. Price promotions can
increase product visibility, store traffic, and some-
times even induce customers to switch brands. A
study by A.C. Nielsen in 2004 estimated that 12%–
25% of supermarket sales in five European countries
were made during promotion (Gedenk et al. 2006).
Price variations do not only help retailers meet their

sales targets but also substantially contribute to the
total profit. One of the supermarket industry charac-
teristics lies in the small profit margins earned by
retailers for most items. A report published by the
Community Development Financial Institutions
(CDFI) Fund states that the average profit margin in
the supermarket industry was 1.9% in 2010, and
Yahoo! Finance data concluded that the average net

profit margin for publicly traded US-based grocery
stores in 2012 was also 1.9%. These studies provide
evidence that setting the right prices can be a good
way for retailers to increase their sales and profits.
However, many retailers are still currently using a
manual process for planning prices. The natural ques-
tion is: Can we develop efficient optimization models
that cater to various business requirements and can
be used to solve realistic instances?
In this study, we study the profit maximization

problem faced by a retailer who needs to decide the
prices of several items over the selling season (e.g., 13
weeks). In practice, retailers need to satisfy several
business rules such as respecting a limited number of
price changes (a comprehensive discussion is pre-
sented in section 2.1). Our approach can handle gen-
eral non-linear demand models that capture
behavioral effects observed in practice (and sup-
ported by actual data). For example, our demand
models account for seasonality effects, the post-pro-
motion dip effect (induced by consumer stockpiling),

2326

Vol. 29, No. 10, October 2020, pp. 2326–2349 DOI 10.1111/poms.13223
ISSN 1059-1478|EISSN 1937-5956|20|2910|2326 © 2020 Production and Operations Management Society

http://orcid.org/0000-0002-2474-3875
http://orcid.org/0000-0002-2474-3875
http://orcid.org/0000-0002-2474-3875
http://orcid.org/0000-0002-0888-9030
http://orcid.org/0000-0002-0888-9030
http://orcid.org/0000-0002-0888-9030


and cross-item effects (substitution and complemen-
tarity among different items). We consider demand
models that are expressed as non-linear and time-
dependent functions of the current and past prices
and seek to solve the profit maximization problem
faced by the retailer. We develop an efficient method
to solve this problem, allowing the retailer to test sev-
eral “what-if” scenarios to better infer the impact of
different pricing policies. We introduce a graphical
representation that allows us to cast the dynamic pric-
ing problem as solving a maximum weighted path on
a layered graph. We then use this representation to
derive complexity results and to develop an efficient
method for solving our problem.

1.1. Contributions
Maximizing profits using dynamic pricing is an
important problem that has captured the attention of
retailers and researchers. Our contributions can be
summarized as follows.

• Formulating the pricing problem as a layered graph
and deriving an NP-hardness result.

We present a dynamic programming formulation
of the profit maximization problem as a maximum
weighted path on a layered graph. This representa-
tion holds for any non-linear and time-dependent
demand function that depends on current and past
prices. One can also easily incorporate pricing busi-
ness rules by adapting the graph structure. We pro-
vide an NP-hardness result by reducing the
weighted maximum 3-satisfiability problem to the
profit maximization problem. This reduction is
approximation preserving, thus showing that there
cannot exist a polynomial-time approximation
scheme (for any factor better than 7/8) for our prob-
lem. We then derive complexity results implying that
our method scales linearly with the number of time
periods but is exponential in the model memory
(number of past prices that affect current demand)
and the number of items.

• Introducing and studying the discrete reference
price model.

We introduce the discrete reference price model,
which is a discretized version of the commonly used
reference price model. First, we show that this model
yields a good approximation of the (continuous) ref-
erence price model both in terms of demand and
profit. Second, we develop an efficient algorithm
(quasi-polynomial-time approximation scheme) for
the profit maximization problem. Third, we propose a
procedure to approximate several common demand
functions using the discrete reference price model—
allowing us to efficiently solve instances with large
memory parameters.

• Extending our approach for multiple items and
incorporating global constraints.

We extend our results to the setting with multiple
items. Inspired by the discrete reference price model,
we propose two solution approaches: consumers form
a reference price for each product separately, or a joint
virtual reference price for the entire category of items.
To our knowledge, this study is the first to consider
the concept of a virtual reference price for multiple
items. To increase the tractability of our approach, we
introduce the notion of blocks and organize items into
smaller clusters so that cross-item interactions across
blocks are negligible. However, it now becomes chal-
lenging to impose global pricing constraints across
blocks. Using ideas from combinatorial optimization,
we limit the total number of promotions across blocks
by solving a multi-choice knapsack problem. We also
develop ways to handle price-ordering and exclusiv-
ity constraints.

• Testing our methods on realistic-size instances
using supermarket data.

Using data from Oracle Retail, we evaluate the
method proposed in this study using supermarket
coffee data. We convey that our solution approach
can solve realistic-size instances in a few minutes.

1.2. Literature Review
Dynamic pricing and sales promotions are extensively
studied in the literature (see, e.g., Blattberg and Neslin
1990, €Ozer et al. 2012, and the references therein). A
recent related work on planning price promotions can
be found in Cohen et al. (2017), where the authors pro-
vide an optimization formulation and propose an effi-
cient approximation method for solving the problem
based on linearizing the objective and solving a linear
program. Our study has a similar motivation but bears
several key differences. First, we model the problem as
a directed layered graph and use dynamic program-
ming instead of a linear programming approximation.
This graphical representation allows us to easily cap-
ture pricing business rules, while providing an access
to combinatorial techniques to solve the problem. Sec-
ond, we show a reduction from maximum satisfiability
to our problem, allowing us to formally show that the
problem is NP-hard. Third, the algorithms developed
in this study yield exact solutions and we extend our
approach to multiple items by proposing the concept
of a virtual reference price. Finally, the problem con-
sidered in this study is not restricted to promotions as
we study a general multi-period pricing problem. To
our knowledge, there are no existing approaches that
can solve our problem optimally (under a non-linear
demand model, discrete prices, and the presence of
business rules).
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Sales promotions are also well-studied in marketing
(see Blattberg and Neslin (1990) and the references
therein). Several retailers (e.g., Walmart) employ an
everyday-low-price strategy (see, e.g., Lal and Rao
1997), whereas many others use temporary price
reductions (i.e., promotions) on selected items (exam-
ples of such works include Blattberg et al. 1995, Nijs
et al. 2001). For a comparison between the two pricing
strategies, see Ellickson and Misra (2008). In market-
ing, the focus is often on estimating demand models
(e.g., linear regression or choice models) to draw man-
agerial insights on the impact of promotions. For
example, Foekens et al. (1998) study econometrics
models based on scanner data to examine the
dynamic effects of promotions. It has been observed
that promotions may lead to a decrease in future
sales, a phenomenon referred to as the post-promotion
dip effect. One way to capture the post-promotion dip
effect is to model demand as a function of the price in
the current period and the prices in the most recent
periods (Heerde et al. 2000, Mac�e and Neslin 2004).
Our work is related to the field of dynamic pricing

(see, e.g., Talluri and van Ryzin 2005). A common
approach used in the dynamic pricing literature is to
model consumers using a reference price model
(Fibich et al. 2003, Kopalle et al. 1996, Popescu and
Wu 2007). The reference price model assumes that
past prices affect the consumers’ willingness to pay.
Then, consumers compare the current price to the
reference price as a benchmark. Prices above the ref-
erence reduce demand, whereas prices below the ref-
erence lead to a demand increase. Kopalle et al.
(1996), Fibich et al. (2003), and Popescu and Wu
(2007) study an infinite-horizon dynamic pricing
problem with a reference price model. Our paper
differs from the models in the dynamic pricing liter-
ature in that our problem is directly inspired by
practical models tailored to setting promotions for
supermarkets and includes important business rules.
In addition, we extend the model of a reference price
to the context of multiple items, where a virtual ref-
erence price captures the cross-item effects on
demand. This extension is important as it allows to
capture substitution and complementarity effects,
while deciding the promotions for several items
simultaneously. Chen et al. (2016) consider the
asymmetric reference price model for a single item
and presents an exact algorithm to solve the continu-
ous pricing problem under some technical condi-
tions. For problems where these conditions do not
hold, the authors develop an approximation algo-
rithm using dynamic programming. However, the
approach in Chen et al. (2016) cannot easily handle
price-dependent business constraints and does not
extend to multiple items. On the other hand, our
paper can handle pricing business rules, provides

NP-hardness and complexity results, and extends to
multiple items.
In the literature on item pricing, one can find two

streams of studies. On the one hand, papers such as
Hartline and Koltun (2005) and Balcan et al. (2008)
rely on the modeling assumption that customers
have a valuation for the items (typically modeled as
a probability distribution function). This assumption
leads to a pricing problem that is hard to solve. In
fact, even optimizing over two prices is not an easy
problem (it was mentioned as an open question in
Balcan et al. 2008). Other related papers in this con-
text are Chakraborty et al. (2013) and den Boer
(2015). On the other hand, our paper assumes that
demand functions are estimated at an aggregate
level, using historical purchase data. In other words,
we estimate a price-demand function for the differ-
ent items, instead of customer valuation distribu-
tions. Using supermarket retail data, we find that
demand functions with a memory parameter (i.e.,
the current demand depends explicitly on past
prices) yield a high out-of-sample prediction accu-
racy. To our knowledge, our paper is the first to
show the NP-hardness of the price optimization
problem, under aggregate demand functions and
prices constrained to lie in a discrete set.
Finally, our work is related to the field of retail

operations and more specifically, to pricing problems.
One of the constraints considered in this study
imposes the prices to lie in a discrete set. Zhao and
Zheng (2000) consider a dynamic pricing problem for
a fixed-inventory perishable product sold over a finite
(continuous) time horizon. For the special case of a
discrete price set, the authors solve the continuous
time dynamic program by applying a discretization
approach and using backward recursion. Our
approach is different in nature as it considers a gen-
eral demand function form that depends on current
and past prices. Subramanian and Sherali (2010)
study a pricing problem for retailers, where prices are
subject to inter-item constraints. Due to the nonlinear-
ity of the objective, they propose a linearization tech-
nique to solve the problem. In our study, we also
consider a model for multiple items that includes sev-
eral global constraints.
On the technical side, we use concepts related to

graph theory and combinatorial algorithms. We
assume the reader to be familiar with the theory of
computational complexity and hardness of problems.
Apart from pointers to relevant references pertaining
to specific combinatorial algorithms and complexity
results in the paper, Schrijver (2003) and Vazirani
(2013) are great references to review these concepts.
Structure of the paper. In section 2, we introduce

our model and assumptions. In section 3, we focus on
the single item setting and present our graphical
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representation, the NP-hardness, and the complexity
results. We then introduce the discrete reference price
model in section 4. Section 5 extends our results to the
setting with multiple items. Computational experi-
ments using supermarket data and our conclusions
are presented in sections 6 and 7, respectively.

2. Model and Assumptions

Given a set of n items and a finite planning horizon of
T time periods, the profit maximization problem aims
to set the price of each item at each period to maxi-
mize the total profit. The prices are assumed to come
from a discrete set (e.g., must end with 9 cents). The
demand is assumed to be a time-dependent function
that depends on the current price and on a constant
number m (referred to as the memory parameter) of
past prices, see Equation (1). We first consider the set-
ting with a single item and discuss the extension with
multiple items in section 5.
We denote the unit cost of the item at time

t 2 {1,. . .,T} by ct and the discrete set of admissible
prices, called the price ladder, by Qp ¼ fq0 [
q1 [ � � � [ qk [ . . . [ qQg. The regular price (i.e.,
the maximum price) is denoted by q0 and the mini-
mum price by qQ.
It is well known that when the price is reduced, con-

sumers tend to purchase larger quantities. Neverthe-
less, this can also induce a post-promotion dip effect
(see, e.g., Mac�e and Neslin 2004) due to the stockpiling
behavior of consumers. In other words, for some items,
customers will purchase larger quantities toward
future consumption (e.g., toiletries and non-perishable
goods). Due to the consumer stockpiling behavior, a
price reduction increases the demand at the current
period but also reduces the demand in subsequent
periods, with the demand slowly recovering to the
nominal level. We propose to capture this effect by a
demand model that explicitly depends on the current
price pt and on the m past prices pt�1; pt�2; . . .; pt�m. We
denote the vector pt ¼ ðpt; pt�1; . . .; pt�mÞ. In addition,
our models have the flexibility to assign different
weights to reflect how strongly a past price affects the
current demand. The parameter m 2 N0 represents the
memory of consumers with respect to past prices and
varies depending on several features of the item. In
practice, m is estimated from data. We consider a gen-
eral time-dependent demand function denoted by
dtðptÞ that explicitly depends on the current price and
m past prices. Mathematically, the demand at time t is
given by:

dtðptÞ ¼ htðpt; pt�1; . . .; pt�mÞ: ð1Þ
We consider solving a finite horizon profit maxi-
mization problem given by:

max
pt

XT
t¼1

�
pt � ct

�
dtðptÞ;

s.t Several business rules.

ð2Þ

We next describe the business rules we incorporate
in our formulation.

2.1. Business Rules
1. Prices are chosen from a discrete price ladder. For

each product, there is a finite set of permissible
prices. For example, prices may have to end
with 9 cents. The price ladder for an item can
be time-dependent, but for simplicity we
assume that the elements of the price ladder
are time-independent (our results still hold
when relaxing this assumption).

2. Limited number of price changes. The retailer may
want to limit the frequency of price changes
for a product.1 This requirement is motivated
from the fact that retailers wish to preserve the
image of their store and not train customers to
be deal seekers. For example, the number of
prices changes for a particular product during
the quarter may be required to remain below
L = 3.

3. Separating periods between successive price
changes. A common requirement is to space out
two successive price changes by a minimal
number of separating periods, denoted by S.
Indeed, if successive price changes are too
close together, this may hurt the store image
and incentivize consumers to be deal seekers.
This business requirement may be dictated by
the brand manufacturer that often restricts the
frequency of promotions to preserve its brand
image.

4. Inter-price constraints. The retailer often wants
to impose constraints on the prices at the dif-
ferent periods. For example, prices can only
decrease in time as the item is very seasonal
(markdown strategy). Alternatively, the first
and last prices can be required to be the same.

5. Inter-item constraints. The retailer may need to
satisfy constraints that link the prices of the
different items. A common business rule is to
limit the total number of price changes for all
items during the season. We provide a more
detailed discussion on this type of constraints
in section 5.4.

2.2. Assumptions
As mentioned, we first consider the setting with a sin-
gle item and present the extension with multiple
items in section 5. We assume that at each period, the
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retailer orders the item from the supplier at a linear
ordering cost that can vary over time, ct. This assump-
tion holds under the conventional wholesale price
contract which is frequently used (see, e.g., Porteus
1990).
We also consider the demand to be a deterministic

function htð�Þ of current and past prices. This assump-
tion is supported by the fact that we capture the
most important factors that affect demand: season-
ality as well as current and past prices. Using
supermarket data, we found that our estimated
demand models have a low forecast error: the out-
of-sample R2 was between 0.85 and 0.96 (some esti-
mation results can be found in Cohen et al. 2017).
For the multiple items setting, we consider cross-
item effects on the demand function (i.e., the price
of item i can affect the demand of item j 6¼ i). We
assume that the estimation-optimization process is
sequential: we first estimate the demand model
from historical data and then compute the optimal
prices.
Finally, we assume that the retailer always carries

enough inventory to meet demand in each period.
This assumption does not apply to all products and
retail settings. For example, it is common practice in
the fashion industry to intentionally produce limited
inventory. Nevertheless, the assumption that the
retailer carries enough inventory is reasonable in set-
tings such as supermarket items such as coffee and
soft drinks. These products are called fast-moving
consumer goods and are available all year round.
Since their shelf lives are usually greater than six
months, customers have been conditioned to expect
that these products would always be in stock at retail
stores.
Starting with the single item setting allows us to

present our approach in a more concise way. Interest-
ingly, several item categories do not have significant
cross-item effects so that effectively, the items can be
treated as independent and one can solve the problem
for each item separately. We extend our approach to
multiple items in section 5 by capturing cross-item
effects.

3. Graphical Representation

In this section, we present our graphical representa-
tion to model the profit maximization problem as a
maximum weighted path problem on a layered
graph. We then report the complexity results and con-
clude by the NP-hardness result.

3.1. Constructing the Graph
Recall that we denote our planning horizon by T and

the price ladder by Qp ¼ fq0; q1; . . .; qQg. For each

period t 2 {m,. . .,T}, we construct the nodes (x,t)
where x 2 Qm

p , that is, all possible m�tuples of prices

Qp. When the price ladder is time-varying (i.e.,

pt 2 Qt;p), we construct nodes (x,t) such that x 2 Qm
t;p.

As discussed, for ease of exposition, we consider a
static price ladder. In Figure 1, we illustrate the lay-
ered graph for Qp ¼ f5; 3; 1g, m = 2, and T = 4. The

label (t = 1, 2) represents the concatenation of both the
first and second time periods. More precisely, the
layer (t = 1, 2) aims to capture the connection between
the first two periods, while encoding the compatibil-
ity restrictions of the prices between both periods. We
add two special nodes to the graph: the source and the
sink (the total number of nodes in the graph is then

2 þ ðT �m þ 1Þ � jQpjm). We call an ordered pair of

m-tuples, (x,y), price-compatible if ðx2; x3; . . .; xmÞ ¼
ðy1; y2; . . .; ym�1Þ, that is, the prices are consistent at
the overlapping time periods. The graph edges are

given by A ¼ �ðx; tÞ; ðy; t þ 1Þjx; y 2 Qm
p ; 1� t�T

�1
�
such that (x,y) are price-compatible. We define

weights on these edges as wððx; tÞ; ðy; t þ 1ÞÞ ¼ ðym
�ctþ1Þdtþ1ðym; . . .; y1; x1Þ. In other words, the weight is
equal to the profit obtained by setting the price ym at
time t + 1. Finally, we add arcs from the source node
to all nodes at time t = m with weight equal to the
profit obtained from the first m prices:
wððsource; ðx;mÞÞÞ ¼ Pm

t¼1ðxt � ctÞdtðxt; . . .; x0Þ. We
also connect all nodes in the last period, t = T, to the
sink with zero weight. Note that the graph we con-
structed forms a directed layered graph since the
edges exist only between nodes in consecutive peri-
ods. Having constructed the layered graph for a given
instance of the profit maximization problem, Proposi-
tion 1 summarizes the equivalence between the profit
maximization problem and finding the maximum
weighted path in the graph.

Figure 1 Layered Graph When Qp ¼ fq0 ¼ 2; q1 ¼ 1g, xr ¼ 2 for
t = 1, h = 0.5, e = 0.25, and T = 4, with Reference Prices
Rounded Down to the Nearest Multiple of 0.25 [Color figure
can be viewed at wileyonlinelibrary.com]
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PROPOSITION 1. Consider the layered graph construction,
as explained above. Any path P from the source to the
sink corresponds to a price assignment ðp1; p2; . . .; pTÞ.
Moreover, the sum of the weights of the edges on P corre-
sponds to the total profit in the profit maximization prob-
lem. As a result, the two problems are equivalent.

PROOF. Since we have constructed a directed
layered graph, any path from the source to the sink
must use exactly one node from each layer for peri-
ods {m,. . .,T}. Since the edges are only between
price-compatible nodes, there is exactly one price
used at each period {1,. . .,T}. Consequently, this
leads to a price value for each period. In addition,
summing up the weights of the edges on the path
yields the total profit. h

This shows that the profit maximization problem is
equivalent to finding the maximum weighted path
(MWP) in the layered graph. The MWP problem is in
general NP-hard (see Karp (1972) or Theorem 8.11 in
Schrijver 2003)). However, the graph in our case is a
directed acyclic graph, so that one can use dynamic pro-
gramming to find the maximum weight path (Mor�avek
1970) in linear time in the number of edges in the graph,
namely, OðTjQpjmþ1Þ for the unconstrained version of
the problem. Note that to solve the MWP between two
nodes s,t 2 V in a directed layered graph D = (V,A,w),
where V denotes the set of vertices, A the set of arcs,
and w the vector of weights, one can solve a compact
linear program (see, e.g., Ahuja et al. 1988).

3.2. Complexity Results
So far, we have considered the profit maximization
problem without any constraints on prices. As dis-
cussed, the runtime complexity for the unconstrained
version of the problem is OðTjQpjmþ1Þ. We next pre-
sent appropriate modifications to the graphical repre-
sentation that allow us to capture the business rules
presented in section 2.1.
Case 1. Constraining prices by restricting the graph.

Very often, practical requirements dictate specific
rules that prohibit certain price variations. For exam-
ple, a markdown policy requires the prices in subse-
quent periods to always be non-increasing. An
additional example is to restrict the price to be below
a certain value. In such cases, one can simply delete
the set of nodes and arcs that violate the rules of inter-
est. In the markdown policy, all arcs connecting a
lower price to a higher price in the subsequent time
period are deleted. Such deletions decrease the graph
size relative to the unconstrained case and hence, may
improve the runtime.
Case 2. Limiting the number of price changes. As dis-

cussed, an important business rule is to restrict the

number of price changes to L. For each period
t 2 {m,. . .,T}, we construct the nodes (x,l,t) where
x 2 Qm

p , l 2 {0,1,. . .,L} and t 2 {1,. . .,T}. In this case,
we maintain a parameter l 2 {1,. . .,L} that counts the
number of price changes used so far. An edge
between nodes ðx; l1; tÞ and ðy; l2; t þ 1Þ exists if and
only if:

1. (x,y) are price-compatible, and
2. l2 ¼ l1 þ 1 when ym 6¼ xm and l2 ¼ l1 other-

wise.

In other words, the graph edges ensure that we cor-
rectly count the number of price changes used so far.
The edge weights are: wððx; l1; tÞ; ðy; l2; t þ 1ÞÞ ¼ ðym
�ctþ1Þdtþ1ðym; . . .; y1; x1Þ. As before, the path from the
source to the sink with the maximum weight yields
the optimal price values. Since the graph size
increases by L, the runtime complexity is O
(TLjQpjmþ1Þ.
Case 3. No-touch constraints. We want to restrict the

minimal duration S between two successive price
changes. One can maintain a parameter at each node
to denote the number of periods before which a price
change can occur. For each period t 2 {1,. . .,T}, we
construct the nodes (x,s,t) with x 2 Qm

p , while satisfy-

ing the no-touch constraints (i.e., for any
x ¼ ðx1; . . .; xmÞ if xi 6¼ xi�1 for i > 1, then
xiþ1; . . .; xminðiþS;mÞ should be set to xi) and s 2 {0,1,. . .,
S}. Here, the parameter s in the node denotes the
number of time periods away from t until a price
change is allowed. Namely, to ensure that the no-
touch constraint is satisfied (i.e., we have a minimum
of S periods between two successive price changes),
we need to ensure that the price during the next S
periods is xi. An edge between ðx; s1; tÞ and
ðy; s2; t þ 1Þ exists if and only if all of the following
are satisfied:

1. (x,y) are price-compatible,
2. s2 ¼ maxðs1 � 1; 0Þ if s1 � 0 and ym ¼ xm (i.e.,

no price change at t + 1), and
3. s2 ¼ S if s1 ¼ 0 and ym 6¼ xm (i.e., a price

change at t + 1).

The edges ensure that we correctly count the num-
ber of periods before a price variation can occur. The
edges’ weights are defined, as before, to capture the
profit at time t + 1: wððx; s1; tÞ; ðy; s2; t þ 1ÞÞ ¼ ðym
�ctþ1Þdtþ1ðym; . . .; y1; x1Þ. In addition, we delete the
nodes with price vectors that do not satisfy the no-
touch constraint. Deleting these nodes can signifi-
cantly reduce the size of the graph, as we explain
next. Recall that we maintain a tuple of m prices in
each node (x,s,t). The vector x captures the prices in
the past m � 1 periods and the current price (i.e., at
time t). The no-touch constraint requires that if one of
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the prices xi 6¼ xiþ1 (for i < t � 1), we then know that a
valid node must have xiþ1þk ¼ xiþ1, for k ≤ t,1 ≤ k ≤ S.
As a result, we can have at most dmSe price changes in

any given node. Consequently, the total number of

nodes in any time period is of the order OðjQpjd
m
SeÞ.2

Note that the nodes in which s is positive have exactly
one outgoing edge, whereas the nodes with s = 0 have
up to TðS þ 1ÞjQpj outgoing edges. The total number

of edges is thus OðTSjQpjd
m
Se þ TjQpjd

m
Seþ 1Þ, corre-

sponding to the running time to solve the profit maxi-
mization problem.
Recall that in our model, the demand at time t

depends on the current price as well as on the m past
prices. Such a model often suffers from the end-of-
horizon effects (see, e.g., Herer and Tzur 2001). In par-
ticular, the optimization creates an artificial advan-
tage to schedule price reductions toward the end of
the horizon, as the price effect on future demand is
overlooked. A possible way to address this issue is to
consider a rolling horizon such that the price at time T
affects demand at times 1 to m (similarly, the price at
time T � 1 affects demand at time T but also at times
1,2,. . .,m � 1). This modification is equivalent to repli-
cating the horizon of T periods an infinite number of
times. Note that the modified problem (actually, we
only modify m demand functions) does not suffer
from the end-of-horizon effect anymore. One can
solve this version of the problem by using our graphi-
cal representation with a planning period of 2T. This
only doubles the graph size, so that the run time com-
plexity remains the same as the unconstrained case.
We summarize the runtimes in Table 1. Incorporat-

ing business rules such as markdown prices or no-
touch constraints improve the optimization problem
by reducing the instance size. As mentioned, our
approach is independent of the demand structure so
that all complexity results hold for any non-linear
demand function. Finally, for the case with no-touch
constraints, when S ≥ m, the algorithm is very efficient
(no longer exponential in the memory parameter).
However, when m is large (e.g., polynomial in T),
these algorithms are no longer tractable and may take
several hours to solve (more details are reported in
section 6). We next discuss the hardness of the profit
maximization problem for the case with a large mem-
ory parameter m. Note that the model studied in this

section including the different business rules can be
written and solved as a dynamic program (details are
omitted for conciseness).

3.3. Hardness Result
We show that when the memory parameter is large,
the profit maximization problem is NP-hard. We pre-
sent a reduction of the weighted maximum 3-satisfia-
bility (Max-3-SAT) (see, e.g., Karp 1972, Schrijver
2003) to our problem. Max-3-SAT is a classical NP-
hard problem. We next introduce some terminology.
A literal x is a variable that can take a boolean value
of true (1) or false (0), and �x denotes the negation of x.
A clause c is a disjunction of three literals, that is,
c ¼ ðxi _ xj _ �xkÞ. A clause is said to be satisfied if an
assignment of boolean values to the literals xi makes
the clause true (i.e., at least one of the literals in the
clause is true). The maximum satisfiability problem
seeks to find an assignment of booleans to the literals
such that the maximum number of clauses are satis-
fied. In the weighted version, each clause cs is given a
non-negative weight ws. The weighted Max-3-SAT
problem is to find an assignment of boolean values
that maximizes the weighted sum of satisfied clauses.

THEOREM 1. The profit maximization problem is NP-
hard when the memory parameter m = Ω(T),3 unless
P = NP. Moreover, it is NP-hard to approximate the
profit maximization problem to 7/8 + e factor, for any
e > 0.

PROOF. To prove the NP-hardness of the profit
maximization problem, we consider an arbitrary
instance of the weighted Max-3-SAT, Isat, and con-
struct a corresponding instance IP of the profit max-
imization problem with a general demand function
dP. We show that any solution of IP corresponds to
a solution of Isat, thereby proving that a polynomial-
time algorithm for the profit maximization problem
when m is Ω(T) is not possible, unless P = NP.
Moreover, since it is NP-hard to approximate the
Max-3-SAT to any approximation factor better than
7/8 (see, e.g., H�astad 2001), the same inapproxima-
bility result applies to the profit maximization prob-
lem. h

Let the Max-3-SAT instance, Isat, be defined using n
literals xi (i = 1,. . .,n) and m clauses cj (j = 1,. . .,m)

each of which has a non-negative weight wj associated

with it. Note that the total number of clauses can only

be at most
2n
3

� �
¼ Hðn3Þ (which is polynomial in n).

We construct an instance of the profit maximization
problem, IP, as follows. We let T = n and m = n�1.

Table 1 Summary of Complexity Results Under Different Business
Rules

Business rules Runtime complexity

Unconstrained problem OðT jQp jmþ1Þ
Limited number of price changes OðTLjQp jmþ1Þ
Markdown prices OðT jQp jmþ1Þ
No-touch constraints OðT jQp jd

m
S
e maxðjQp j;SÞÞ

End-of-horizon effects OðT jQp jmþ1Þ
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The price ladder is simply Qp ¼ f2; 1g. The price at
any period t will correspond to the literal xt ¼ 0 (if
pt ¼ 2) or xt ¼ 1 (if pt ¼ 1) (and correspondingly,
�xt ¼ 1 or 0). Consider the following demand function
for the profit maximization problem:

dtðptÞ ¼
X
j2Jt

wjcjðptÞ=pt;

where Jt is the set of indices of clauses such that the
maximum indexed literal in the clause is xt or �xt,
and cjðptÞ ¼ 1 if the corresponding assignment of

the literals in the clause satisfies it and otherwise
cjðptÞ ¼ 0. Given a price vector (i.e., an assignment

of literals), it is easy to evaluate the demand. More-
over, the demand function depends exactly on two
past prices for every time period t > 2 and can be
specified using a polynomial number of inputs.
Since we did not impose any assumption on the

demand function in the profit maximization formula-
tion, one can encapsulate the above weighted Max-3-
SAT objective into the profit maximization problem.
Thus, our finite horizon profit maximization problem
reduces to:

max
pt

XT
t¼1

ptdtðptÞ ¼ max
pt

X
j2Jt

wjcjðptÞ ¼
ðaÞ

max
pT

Xm
j¼1

wjcjðpTÞ;

ð3Þ
where the equality in (a) holds since fJtg partitions
the set of clauses. Therefore, solving the profit maxi-
mization problem in polynomial time would contra-
dict the NP-hardness of the Max-3-SAT—concluding
the proof. Since the reduction is exact, any inapprox-
imability bound for Max-3-SAT also applies to the
profit maximization problem when m is Ω(T).
Having shown that the profit maximization prob-

lem cannot, in general, admit a polynomial-time
approximation algorithm with a factor better than
7/8 + e (for any e > 0), a natural question is: What
assumptions on the demand function would render
the problem approximable to an arbitrary constant
factor (in polynomial space) under a large memory
parameter? In the next section, we study the refer-
ences price model and show that there exists an effi-
cient approximation method to solve the problem up
to (1 + e) accuracy, for an arbitrary e > 0.

4. Reference Price Model

In this section, we introduce a discrete version of the
commonly used reference price model (see, e.g.,
Popescu and Wu 2007). In the continuous reference
price model, the demand at time t is assumed to
depend on the current price pt and the reference price
rt. The latter represents the baseline price that

consumers are forming based on past prices. Recall
that our setting focuses on discrete prices. In addition,
customers may not form a reference price with infi-
nite precision. Consequently, we propose to only
allow reference prices that belong to a discrete ladder
denoted by Qr (e.g., 5 cents intervals for an item that
costs 1 dollar). We call this the discrete reference price
model. Note that this is a special case of our general
demand in Equation (1), where the memory parame-
ter is large (i.e., m = T) but the contributions of past
prices are decaying by a constant factor (see more
details below). We first develop an exact algorithm
that runs in polynomial time with respect to the input
price ladder. Subsequently, we approximate a general
demand with linear past price effects using the dis-
crete reference price model and derive bounds on the
profit performance. These results will prove useful in
the context of multiple items (see section 5).

4.1. Discrete Reference Price Model
As discussed, instead of considering a general
demand model that depends on the current and m
past prices, the reference price model depends on the
current price and on the (continuous) reference price
rt. Specifically, the reference price follows the follow-
ing update equation:

rt ¼ ð1� hÞpt�1 þ hrt�1; ð4Þ
where 0 ≤ h < 1 represents the weight that con-
sumers allocate to past prices. For example, the
demand model in Fibich et al. (2003) with a (linear)
symmetric reference price effect is given by:

dt ¼ at � b0pt � /ðpt � rtÞ: ð5Þ
The parameter / denotes the price sensitivity with
the reference price, and ðb0 þ /Þ corresponds to the
price sensitivity with pt. The reference price at time
t can be rewritten as follows:

rt ¼ ð1� hÞpt�1 þ hð1� hÞpt�2 þ h2ð1� hÞpt�3 þ � � �

¼ ð1� hÞ
XT
k¼1

hk�1pt�k:

Thus, the demand at time t from Equation (5) can
also be written in terms of the prices:

dtðpt; pt�1; . . .; pt�TÞ ¼ at � ðb0 þ /Þpt þ /
XT
k¼1

ð1

� hÞhk�1pt�k: ð6Þ

Equation (6) indeed depicts a model that depends
on the current and m past prices (with m = T). More
generally, we consider a non-linear reference price-
demand model of the form:
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dtðpt; rtÞ ¼ ftðptÞ þ gðpt � rtÞ: ð7Þ
Here, the demand model includes two additive
parts: (i) the price and seasonality effects captured
by the function ftð�Þ, and (ii) the reference price
effect modeled by the function gð�Þ : R ! R that
depends on the difference between the price and the
reference price. We assume that the function g(�) is
G-Lipschitz (i.e., jg0ðxÞj �G for all x 2 R). The
assumption that the function g(�) is G-Lipschitz is a
common assumption that yields analytical tractabil-
ity (see, e.g., Chaib-draa and M€uller 2006, Dockner
et al. 2000). In our context, this assumption means
that a small price change will not increase or
decrease the demand by an arbitrary amount, which
is reasonable in most practical settings. We note that
the demand model in Equation (7) includes cases
where the reference price effect is asymmetric.
Recall that the reference price represents the price

that consumers are willing to pay for the item based
on past prices. Given that consumers may not form a
reference price with infinite precision, it seems rea-
sonable to assume that rt lies in a discrete set where
the values are rounded to some finite level (e.g., 5
cents). We denote the discrete reference price by r̂t,
and its set of values by Qr ¼ fr0 [ r1 [ � � � [
rn [ . . . [ rNg. We have: r0 ¼ q0 and rN ¼ qQ (the
smallest element of the price ladder). We next intro-
duce the discrete reference price at time t which is
obtained by:4

r̂t ¼ round
h
ð1� hÞpt�1 þ hr̂t�1

i
: ð8Þ

We next show that the discrete reference price
model approaches the continuous reference
price model in the limit of the discretization of
the price ladder. We choose Qr such that
rk � rk�1 ¼ �; 8k ¼ 1; 2; . . .N, for some given e > 0.

PROPOSITION 2. Consider the continuous reference price
model in Equation (4) and the proposed discrete reference
price model with precision e > 0 as in Equation (8).
Then, the difference between the continuous and discrete
reference prices at time t is bounded by:

ĵrt � rtj � 1� ht�1

1� h
�; ð9Þ

where rt and r̂t denote the continuous and the discrete
reference prices at time t, respectively.

PROOF. For the first period, we have:

r̂1 ¼ round
h
ð1� hÞp0 þ hr0

i
¼ r1 � �: Then, for

t = 2, one can write: r̂2 ¼ round
h
ð1� hÞp1 þ hr̂1

i

¼ round
h
ð1� hÞp1 þ hðr1 � �Þ

i
: Recall that r2 ¼

ð1� hÞp1 þ hr1 and therefore, one can bound the
rounding error in r̂2 as follows: r̂2 ¼
round

h
r2 � h�

i
¼ r2 � ðh þ 1Þ�: We next proceed by

induction on t. We assume that the claim is true for

t = k: r̂k ¼ rk � ðPk�1
u¼0 h

uÞ�. We next show that the
claim holds for t = k + 1. We have:

r̂kþ1 ¼ round
h
ð1� hÞpk þ hr̂k

i
¼ round

h
ð1� hÞpk þ hðrk � ð

Xk�1

u¼0

huÞ�Þ
i
:

Using the fact that rkþ1 ¼ ð1� hÞpk þ hrk, we obtain:

r̂kþ1 ¼ round
h
rkþ1 � hð

Xk�1

u¼0

huÞ�
i
¼ rkþ1 � ð

Xk

u¼0

huÞ�

¼ rkþ1 �
� 1� hkþ1

1� h

	
�;

concluding the proof. h

Since 0 ≤ h < 1, the difference is guaranteed to be
within a constant factor of e. We next show that in the
limit of the reference price ladder discretization, the
demand and total profit also approach their continu-
ous model counterparts. This shows that the discrete
reference price model is a good approximation of the
continuous model, while providing the benefit of
modeling customer behavior more realistically. We
propose two simple ways of selecting the discrete ref-
erence price ladder: either set Qr ¼ Qp or consider a
discretization of 1 cent. The former choice models the
scenario when customers remember past prices and
select one of the past prices to be the reference. The
latter choice captures the fact that consumer prefer-
ences can only be granular up to 1 cent.

COROLLARY 1. Consider the demand model in Equation
(7) and the discrete reference price model with precision
e > 0. Then, the difference between the demand value and
the total profit are bounded by:

jd̂t � dtj ¼ jgðpt � r̂tÞ � gðpt � rtÞj�Gĵrt
� rtj �G

1� ht�1

1� h
�; ð10Þ




P̂�P



�Tðq0 � cminÞG 1� hT�1

1� h
�; ð11Þ

where d̂t and P̂ denote the demand at time t and the total
profit from the discrete model, respectively. Here, cmin

denotes the minimal cost value, cmin ¼ mint ct.
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Corollary 1 follows from Proposition 2 and from the
fact that g(�) is G-Lipschitz. For the special case with a
linear demand model as in Equation (5), we have:

jd̂t � dtj ¼ /ĵrt � rtj �/
1� ht�1

1� h
�: ð12Þ

One can also consider a linear asymmetric reference
price model (see, e.g., Popescu and Wu 2007), that
is, dt ¼ ftðptÞ � /lossðpt � rtÞþ þ /gainðrt � ptÞþ. This
captures the fact that a price reduction does not
have the same effect as a price increase. In this case,
one can rewrite the bound in Equation (12) with
/ ¼ maxð/gain;/lossÞ.
We next present a polynomial algorithm for the

profit maximization problem under the discrete refer-
ence price model (for a given reference price ladder).
More precisely, we propose a dynamic program algo-
rithm that is polynomial in jQpj and jQrj. Note that Qr

can be an input to the algorithm (with any precision)
and that the algorithm is independent of the way of
rounding.
Graphical Representation. Suppose we are given a

discrete reference price ladder Qr ¼ fr0 [ r1 [
r2 [ . . . [ rNg, where r0 ¼ q0, rN ¼ qQ such that
rk � rk�1 ¼ �; 8k ¼ 1; 2; . . .N, for some e > 0. We can
construct a layered graph such that computing a max-
imum weighted path yields the optimal prices. For
each period t 2 [1,. . .,T], we construct the nodes (x,t),
where x ¼ ðxp; xrÞ 2 Qp �Qr. We add two special
nodes to the graph: the source and the sink (the total
number of nodes in the graph is then 2 þ TjQpjjQrj).
As before, we call a pair of nodes, (x,t),(y,t + 1), price-
compatible if ð1� hÞxp þ hxr � �� yr �ð1� hÞxp þ
hxr þ � for 1 ≤ t ≤ T � 1, that is, the reference prices
are updated in a consistent manner in consecutive
periods. We then add a set of arcs to the graph given
by A ¼ �ðx; tÞ; ðy; t þ 1Þjx;y2Qp�Qr;1� t�T� 1

�
such that (x,t),(y,t + 1) are price-compatible. We
define weights on these edges as wððx; tÞ; ðy; t þ 1ÞÞ ¼
ðyp� ctþ1Þdtþ1ðyp;yrÞ. In other words, this weight is
equal to the profit obtained by introducing price yp at
time t+1. Finally, we add arcs from the source to all
nodes at time t = 1 with weight ðxp� c1Þd1ðxp;xrÞ,
where we assume that xr ¼ 1. We also connect all the
nodes at t = T to the sink with zero weight. Note that
the graph forms a directed layered graph since the
edges exist only between nodes in consecutive peri-
ods. In Figure 2, we illustrate the layered graph for
Qp ¼ fq0 ¼ 2;q1 ¼ 1g, xr ¼ 2 for t = 1, h = 0.5,
e = 0.25, and T = 4 with the reference prices rounded
down inQr ¼ f1;1:25;1:5;1:75;2g.
In the same spirit as in Proposition 1, optimizing

prices under the discrete reference price model and
finding the maximum weighted path in the graph are
equivalent.

PROPOSITION 3. Consider the layered graph for the dis-
crete reference price model (8). Any path P from the
source to the sink corresponds to a price assignment
ðp1; p2; . . .; pTÞ, and the sum of the weights of the edges
on P corresponds to the total profit. Thus, the two
problems are equivalent.

The proof of Proposition 3 follows directly from the
way we constructed the layered graph and is omitted
for conciseness. The time complexity of finding the
maximum profit path is OðTjQpj2jQrjÞ. In the special
case where Qr ¼ Qp (i.e., the reference price is
rounded to prices in the price ladder), this reduces to
OðTjQpj3Þ. Recall that our goal is to optimize the profit
for a demand model with a large memory parameter
(i.e., m = T). We have proposed an alternate discrete
reference price model which effectively behaves as if
the memory parameter was equal to two by merging
all the required information in a single quantity (the
discrete reference price at each time). Finally, one can
easily incorporate business constraints in the same
way as in section 3.2. As shown in section 3.2, this
method runs in < 0.1 second for realistic-size
instances.

4.2. Reference Price Model Approximation
As discussed in section 3.3, for a general demand func-
tion with a large m, our method may not be applicable
as the time complexity is exponential in m. Without
specific assumptions on the structure of the problem, it
is not clear how one can develop an efficient algorithm
to solve the problem. However, as we saw in the previ-
ous section, the discrete reference price model can be
solved efficiently. In this section, we present a way to
approximate several demand functions using the dis-
crete reference price model and we derive bounds on
the quality of the approximation. We consider three
common demand models that can be estimated from

Figure 2 Layered Graph When Qp ¼ fq0 ¼ 2; q1 ¼ 1g, xr ¼ 2 for
t = 1, h = 0.5, e = 0.25, and T = 4, with Reference Prices
Rounded Down to the Nearest Multiple of 0.25 [Color figure
can be viewed at wileyonlinelibrary.com]
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data: linear past prices, log-log past prices, and log-lin-
ear past prices. We next present the analysis for
demand models with linear past prices effects as in
Equation (13) and include the analysis for the log-log
and log-linear models in Appendix 8. In all three cases,
we develop a procedure to approximate the true
demand function with a large m and provide an effi-
cient algorithm to solve the problem.
We consider a model where the demand at time t

depends on the current and past m prices, where
m = T (i.e., a setting with a large memory parameter):

dtðptÞ ¼ ftðptÞ þ b1pt�1 þ � � � þ bTpt�T: ð13Þ
The parameters b1; . . .; bT and the functions ftð�Þ are
estimated from data. A common assumption—vali-
dated by our data—requires the gain parameters to
be non-negative and non-increasing: b1 � � � � �
bT � 0. In addition, b1 is often much larger relative to
the other coefficients. Intuitively, the most recent
price has a higher impact relative to prices further in
the past. Recall that the time complexity of our
dynamic program is exponential in m, and thus not
tractable. Our goal is to use a similar methodology as
for the discrete reference price model and approxi-
mate the demand function in Equation (13) to
depend only on the current price pt and on a single
additional variable ~rt, called the modified reference
price. We require ~rtþ1 to depend only on ~rt and pt.
We naturally impose the following relation:5

~rt ¼ ð1� ~hÞpt�1 þ ~h~rt�1; ð14Þ
where ~h is a design parameter that aims to approxi-
mate the true demand from Equation (13) using the
following approximated demand model:

edtðpt; ertÞ ¼ ftðptÞ þ ~/pt � ~/ðpt � ~rtÞ ¼ ftðptÞ þ ~/ert :
ð15Þ

In other words, Equations (14) and (15) aim to
approximate the true demand from Equation (13) by
carefully choosing ~h and ~/. Specifically, we need to
approximate a linear function with T coefficients by
using an approximation with only two parameters.
As in Equation (6), one can write:

edtðpt; ertÞ ¼ ftðptÞ þ ~/
XT
k¼1

ð1� ~hÞ~hk�1pt�k: ð16Þ

Observe that if the coefficients bi are decreasing by
a constant factor, that is, biþ1=bi is constant for all i,
we then obtain as a special case, the (linear) refer-
ence price model from Equation (5) and the approxi-
mation is exact. When the ratios are not constant,
we obtain an approximation.

Given that b1 is often larger relative to the other
coefficients (i.e., the last price has a higher effect rela-
tive to further past prices), we want to ensure that we
match the effect of the most recent past price pt�1. We
thus require: ~/ð1� ~hÞ ¼ b1, or equivalently ~/ is
always set such that ~/ ¼ b1=ð1� ~hÞ. This leaves us
with a single degree of freedom (~h) to approximate
the T�1 remaining factors. Equation (16) becomes:

edtðpt; ertÞ ¼ ftðptÞ þ b1pt�1 þ b1
XT
k¼2

~hk�1pt�k: ð17Þ

We next propose three different approximations that
depend on the value of ~h:

1. ~hmin ¼ mini¼1;...;T�1 b
iþ1=bi.

2. ~hmax ¼ maxi¼1;...;T�1 b
iþ1=bi.

3. ~hLS is defined so that it minimizes the follow-
ing error function:

XT
k¼2

�
bk � b1~hk�1

�2
: ð18Þ

The value of ~hmin (resp. ~hmax) can be interpreted as a
lower (resp. upper) envelope of the true demand
function that belongs to all the linear demand models
with a reference price.
One can compute ~hLS numerically by searching, as

minimizing the function in Equation (8) is a single-
dimensional optimization problem. A more conven-
tional way to find the least-squares estimate is not to
impose ~/ð1� ~hÞ ¼ b1, but instead estimate both
parameters ~hLS and ~/. In our model, however, we are
exploiting the fact that b1 is higher than the other
coefficients and want to ensure that the past-price
effect is fully matched by the approximation. More
importantly, imposing ~/ð1� ~hÞ ¼ b1 allows us to
reduce the problem to a single-dimensional problem,
which is easier to solve.
The corresponding demand approximations are

labeled as dmin
t , dmax

t , and dLSt . Similarly, the optimal
profits using the different approximations are denoted
byPmin, Pmax, and PLS. For instance, Pmin corresponds
to solving the approximated problem with ~h ¼ ~hmin

(recall that the problem becomes tractable since one
can apply the efficient algorithm from section 4.1).

PROPOSITION 4. Consider the true demand function from
Equation (13) with a large memory parameter (i.e.,
m = T). Consider also the approximation using the
continuous reference price model with the three different
~h defined above. Then, we have:

Pmin �PLS �Pmax;

Pmin �PTrue �Pmax;
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where PTrue corresponds to the optimal profit using the
true demand function from Equation (13).

PROOF. We show that using the approximation with
~hmin (resp. ~hmax) provides a lower (resp. upper)
bound relative to any other approximation within
the class of approximations we are considering (in
particular, the one using ~hLS), as well as relative to
the true demand function. For any given price vec-
tor pt, we have:

Pmin ¼
XT
t¼1

ðpt � ctÞdmin
t �

XT
t¼1

ðpt � ctÞdLSt

�
XT
t¼1

ðpt � ctÞdmax
t ¼ Pmax;

Pmin ¼
XT
t¼1

ðpt � ctÞdmin
t �

XT
t¼1

ðpt � ctÞdTruet

�
XT
t¼1

ðpt � ctÞdmax
t ¼ Pmax:

The four inequalities follow from the fact that
bi ð8i ¼ 1; . . .;TÞ are all non-negative and that under
the same price vector, using a smaller value of ~h can
only decrease the demand and hence the profit
(under a given price vector, dmin

t � dLSt � dmax
t and

dmin
t � dTruet � dmax

t for all t). h

Note that the results in Propositions 2 and 4 imply
that one can approximate the problem with the
demand function in Equation (13) by using the dis-
crete reference price model. This allows us to solve
the problem efficiently (polynomial time), while hav-
ing a guarantee on the quality of the approximation.
In Figure 3, we consider a specific instance with
T = 10 and plot the demand approximations using
~hmin, ~hLS, and ~hmax. The values in the y-axis correspond
to the true and approximated (using the three approx-
imations) values of bt for t = 1,2,. . .,10. One can see
that both the true values and the ones obtained using
~hLS are lower bounded by the ~hmin approximation and
upper bounded by the ~hmax approximation. In addi-
tion, the approximation based on ~hLS yields a good
approximation. As we show in section 6, for ran-
domly generated instances, the 25th percentile and
median are 97.7% and 99.4% relative to the optimal
profit, respectively.
To summarize, one can solve the problem with ~hLS

and obtain an approximation solution efficiently. In
addition, we have lower and upper bounds on the
profit performance by solving the problem with ~hmin

and ~hmax. As discussed, for the reference price model,

we have Pmin ¼ Pmax so that the approximation is
exact, whereas for any other demand function as in
Equation (13), the approximation is not exact but
provides a good computational performance (see
section 6).

5. Multiple Items

We extend the graphical model for the profit maxi-
mization problem with multiple items. We consider a
setting with n > 1 items for which the retailer needs
to set the prices of each item at each period. As before,
we assume that the current demand of item i depends
on the current price of item i, pit, and the past self
prices pit�1; . . .; p

i
t�mi

. In addition, the demand of item i
now also depends on the vector of current other
prices: p

j
t for j 6¼ i. This aims to capture cross-item

effects on demand, that is, a price variation on one
item can affect the sales of other items. For example, a
price reduction on item j may decrease the sales of
item i (in this case, items i and j are substitutes) or
increase the sales of item k (in this case, items j and k
are complements).
We first observe that one can extend the graphical

representation from section 3 to the case with n items
by expanding the size of each node in the graph.
Namely, in each node, we maintain a tuple of m9n
prices: m prices for each items. The total number of
nodes at each period is then jQpjmn. To simplify the
exposition, we assume that each item has the same
memory parameter, mi ¼ m ∀i = 1,2,. . .,n, and the
same price ladder Qp. Consequently, we obtain a
naive extension of the previous results. For example,
the time complexity of the unconstrained problem for
n items is OðTjQpjnðmþ1ÞÞ. Unfortunately, this
approach is intractable (the time complexity grows
exponentially with m and n) and even for instances

Figure 3 An Example of How the Estimated Parameters Compare to
the True Parameters [Color figure can be viewed at wileyon
linelibrary.com]

Cohen, Gupta, Kalas, and Perakis: An Efficient Algorithm for Dynamic Pricing Using a Graphical Representation
Production and Operations Management 29(10), pp. 2326–2349, © 2020 Production and Operations Management Society 2337

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


with relatively small values of m and n, this may take
several hours to solve (for more details, see section 6).
To address this issue, we propose two alternative
approaches that allow us to solve the problem more
efficiently. Both methods borrow the intuitions and
results developed in section 4. The first method is
based on having a reference price for each item,
whereas the second considers a single virtual refer-
ence price for all the items.

5.1. Model with n Reference Prices
We consider that consumers form a reference price
based on past prices for each item separately. Accord-
ingly, the demand of item i at time t is given by:

ditðp1t ; p2t ; . . .; pnt ; ritÞ ¼ f itðp1t ; p2t ; . . .; pnt Þ þ gitðpit � ritÞ;

where the first term represents the effect of all cur-
rent prices, and the second term captures the effect
of the reference price of item i at time t, rit, which
can be written as

rit ¼ hir
i
t�1 þ ð1� hiÞhiðp1t�1; p

2
t�1; . . .; p

n
t�1Þ:

In this case, the function hið�Þ can depend on all
prices at the previous period. In its simplest form,
hiðp1t�1; p

2
t�1; . . .; p

n
t�1Þ would be equal to pit�1. More

generally, hið�Þ can depend on all prices at the pre-
vious period (e.g., a weighted average of all the
prices). Note that the parameters 0\ hi � 1 can be
different for each item and are estimated from data.
Using this representation, we conclude that the dis-

crete reference price model for n items has time com-
plexity of OðTjQpjnþ1Qn

r Þ, where Qr is the reference
price ladder (see section 4.1). This is a significant
improvement relative to the naive extension dis-
cussed above with a time complexity of
OðTjQpjnðmþ1ÞÞ.
Interestingly, one can extend the result of Proposi-

tion 4 for this model. Specifically, if the function

hiðp1t�1; p
2
t�1; . . .; p

n
t�1Þ ¼ pit�1 for each item i = 1,. . .,n,

we can compute ~himin and ~himax for each i in the same
way as for the setting with a single item. Hence, the
result of Proposition 4 still holds, that is,

Pmin �PLS �Pmax and Pmin �PTrue �Pmax. More gen-

erally, when hiðp1t�1; p
2
t�1; . . .; p

n
t�1Þ is a general function

of the prices in the previous period, the minimum

(resp. maximum) bound is obtained by using ~hmin

(resp. ~hmax) together with hmin ¼ mini;pt�1
fhiðp1t�1;

p2t�1; . . .; p
n
t�1Þg (resp. hmax ¼ maxi;pt�1

fhiðp1t�1; p
2
t�1; . . .;

pnt�1Þg). Note that when the function hið�Þ is the aver-
age, minimum, or maximum (or any convex combina-
tion of the prices in the previous period), one can use

hmin ¼ minfp1t�1; p
2
t�1; . . .; p

n
t�1g (resp. hmax ¼ max

fp1t�1; p
2
t�1; . . .; p

n
t�1g).

5.2. Model with a Single Reference Price
Given a category of items in a supermarket (e.g., cof-
fee), customers often have a notion of how much they
are willing to spend for buying one pack of coffee.
They do not form a reference price for each item sepa-
rately but instead, consider a reference price for the
category. We call this notion of aggregate baseline
the virtual reference price. To our knowledge, we are
the first to formally introduce this concept. We con-
sider that consumers form a single reference price rVt
for the entire category of n items. In this case, we
assume that the demand of item i at time t is given by:

ditðp1t ; p2t ; . . .; pnt ; rVt Þ ¼ f itðp1t ; p2t ; . . .; pnt Þ þ gitðpit � rVt Þ;

where the first term represents the effect of all cur-
rent prices, and the second term captures the effect
of the virtual reference price at time t, which is
given by:

rVt ¼ hVr
V
t�1 þ ð1� hVÞhðp1t�1; p

2
t�1; . . .; p

n
t�1Þ;

where the function h(�) can depend on all prices at
the previous period. For example, the function h(�)
can be a weighted average of the n past prices, the
minimum, or the maximum. The parameter
0\ hV � 1 represents the memory of past prices and
is estimated from data.
Using this representation, one can also consider dis-

cretized virtual reference prices. Then, the time com-
plexity of the model reduces to OðTjQpjnþ1QrÞ, where
Qr is the number of elements in the discrete ladder of
the virtual reference price. Note that if n is large or if
Qr includes many elements (i.e., the precision param-
eter e is small), then this model is the only one (out of
three approaches we considered) that is tractable. We
compare the time complexity of the three approaches
in Table 2. We further compare the three approaches
computationally in section 6.5.
We next show how to extend the result of Proposi-

tion 4 for this model. This is not straightforward since
the past prices of the different items can directly affect
the demand of all items. Fortunately, we can still find
the minimum and maximum profit bounds within the
virtual reference price family of functions. We define
~hmin (resp. ~hmax) to be the minimum (resp. maximum)
ratio across both time periods and items, that is:

~hmin ¼ min
k¼1;...;n

min
i¼1;...;T�1

biþ1
k =bik;

~hmax ¼ max
k¼1;...;n

max
i¼1;...;T�1

biþ1
k =bik:

We also define hmin (resp. hmax) in the same way as
in section 5.1. Finally, we impose the following
equation: ~/ð1� hVÞ ¼ mini¼1;...;n b

i
1. We can then

conclude that the result of Proposition 4 also holds
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for the setting with multiple items under a single
virtual reference price.
Interestingly, all three methods can easily be

extended to incorporate business rules. First, one can
satisfy pricing constraints for each item as in section
2.1. Second, one can consider business rules that link
the price changes of the different items. The most
common constraint is to impose a limitation on the
total number of price changes during the selling sea-
son for the entire category. Alternative examples
include enforcing a relationship between prices of the
different items (e.g., smaller formats should be always
cheaper than larger formats) and exclusivity deals.
We discuss the implementation of this type of global
constraints in section 5.4. We next describe a practical
model that makes the approach presented in this sec-
tion even more efficient.

5.3. Practical Model with Blocks
The demand of a product is often affected only by a
relatively small subset of other items’ prices in the cat-
egory. A typical category in a supermarket can
include between 30 and 250 different items and it is
clear that price variations of certain items will have
no impact on the sales of other items. For instance,
two items may be in the same category but have a
very weak connection in terms of substitution or com-
plementarity (e.g., dark roast and decaf products).
Ultimately, the demand of a product is typically
affected only by a few prices. We use this observation
to refine the time complexity of the three previous
methods and obtain a more efficient solution
approach. Specifically, out of the n items, one can
potentially cluster the products into different clusters
(also called blocks) that share similar features. In
practice, one can estimate the cross elasticities
between prices and very often, a large portion are not
statistically significant. Alternatively, one can first run
a clustering algorithm (e.g., K-means) to partition the
n items into K clusters (the value of K depends on the
setting) and then, for each cluster, one can estimate
the demand of each item while assuming there is no
cross price effects between two different clusters. To
identify the clusters, one can use data attributes such
as price range (e.g., low/medium/high), brand, func-
tionality features (e.g., color, type of product, cate-
gory, flavor), location of the item on the shelf (for
brick-and-mortar stores), and velocity (i.e., how fast
the product has been selling in the past). In what

follows, we assume that the n items can be clustered
in K blocks. We then consider that only the items in
the same block affect each other, that is, the demand
of item i depends only on prices of the items in the
same block. Using this assumption, one can take
advantage of this structure to improve the time com-
plexity of our methods by solving for each block sepa-
rately. More precisely, when Qr ¼ Qp and assuming
that each cluster is composed of n/K items (for ease of
exposition), the time complexities are given by:

• Naive model: OðKTjQpjnðmþ1Þ=KÞ.
• Model with n reference prices: OðKT

jQpj1þ2n=KÞ.
• Model with a single reference price: OðKT

jQpj2þn=KÞ.
A more concrete comparison of the runtimes for the

three methods is presented in section 6.5 using a real-
istic instance with 100 items. As we will see, the
model with a single reference price solves in minutes
even for instances with a large number of items. We
next discuss how to adapt our approach to incorpo-
rate global business rules.

5.4. Business Constraints with Blocks
Motivated by practical retail settings, we consider glo-
bal pricing rules that restrict the permissible price
changes. For example, the retailer may have a restric-
tion on the total number of price changes in the cate-
gory. This rule may be imposed by a store manager
who is concerned about preserving its store image. A
second common restriction is called price-ordering
constraints that dictate the price relationship of two
items. Finally, we also consider exclusive deals
offered by brand manufacturers.
We first illustrate the combinatorial blow up that

occurs when trying to satisfy global business con-
straints. Consider two blocks of items with no cross-
item effects between the blocks. For instance, one
could consider two sets of items: dark roast coffee
(block 1) and decaf coffee (block 2). Suppose that by
optimizing the prices independently for each block,
the profits are maximized in block 1 by setting 6 price
changes, whereas block 2 requires 4 price changes.
However, consider the global constraint in which the
store enforces a limit of 8 price changes for all coffee
items. We then need to decide which price changes to
remove from each block so that the overall profits are
maximized while satisfying the global limit of 8 price
changes. Note that the number of options increases
exponentially with the number of blocks. We next
show how to adapt our approach to avoid such a
combinatorial blow up and to efficiently incorporate
global constraints.
Case 1. Limiting the total number of price changes. Our

goal is to restrict the total number of price changes to

Table 2 Summary of Time Complexity Results for Multiple Items

Model Time complexity Qr ¼ Qp

Naive OðT jQp jnðmþ1ÞÞ OðT jQp jnðmþ1ÞÞ
n reference prices OðT jQp jnþ1Qn

r ) OðT jQp j2nþ1Þ
Single reference price OðT jQp jnþ1Qr Þ OðT jQp jnþ2Þ
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be at most Ltotal, overall K blocks. First, we compute
the function Yð�Þ : f1; . . .;Kg � f0; . . .; Ltotalg ! R that
calculates the maximum profit achievable in block Bi

by using at most j price changes. This function can be
computed using the methods from section 5 (a single
run of the algorithm is required for each block Bi and
each value of j). Let xði;jÞ be binary variables for
i 2 {1,. . .,K} and j 2 f0; . . .; Ltotalg such that xði;jÞ ¼ 1 if
and only if a price assignment (i.e., the price of each
item at each time period) with at most j price changes
is selected for block Bi (and xði;jÞ ¼ 0, otherwise). To
find the optimal prices for all blocks that satisfy the
global constraint of at most Ltotal price changes, one
can solve the following optimization problem:

max
XK
i¼1

XLtotal
j¼0

YiðjÞxði;jÞ

XLtotal
j¼0

xði;jÞ ¼ 18i 2 f1; . . .;Kg ð19Þ

XK
i¼1

XLtotal
j¼0

jxði;jÞ � Ltotal ð20Þ

xði;jÞ 2 f0; 1g8i 2 f1; . . .;Kg; j 2 f1; . . .; Ltotalg:

Here, the decision variables are xði;jÞ. The variables

YiðjÞ are computed beforehand. Constraints (19)
ensure that for any block Bi, a specific number of
price changes is selected, whereas Constraints (20)
ensure that the total number of price changes across
all blocks does not exceed Ltotal. This is an instance of
the well-known multiple-choice knapsack problem
which is NP-hard (see, e.g., Pisinger 1995). Neverthe-
less, it can be solved using dynamic programming
(Dudzi�nski and Walukiewicz 1987), with running

time OðKL2totalÞ—allowing us to handle the restriction

on the total number of price changes efficiently.
Case 2. Price-ordering constraints. Retailers may need

to satisfy price orderings on certain sets of items. A
concrete example is the same brand with two differ-
ent formats. In this case, the price of the smaller for-
mat needs to be cheaper than the larger format, at all
times. Consider items i and j (possibly in different
blocks) such that the price of item i is required to be
lower than the price of j at all times, that is, we want
to ensure that

max
t¼1;...;T

pit � min
t¼1;...;T

p
j
t: ð21Þ

Let Qi and Qj be the price ladders of items i and j,
respectively. To impose Equation (21), we compute
the maximum achievable profit for each of the two
blocks (and the corresponding price vectors) such
that pit � v and p

j
t � v for all t = 1,. . .,T and for each

value v 2 Qi [ Qj. One can do so by simply deleting

the nodes that violate these inequalities. Then, one
can obtain the optimal prices that satisfy Equation
(21) by selecting the value of v that maximizes the
total profit. In the worst case, we require solving the
profit maximization problem 2jQi [ Qjj times.
Case 3. Exclusivity constraints. Trade funds dictated

by manufacturers may impose an “exclusivity deal"
that prohibits retailers from decreasing prices of com-
peting items at the same time. For example, a manufac-
turer may offer a deal to the retailer that entails
promoting (i.e., decreasing prices) some of the items in
the set K1 at a given time t (e.g., during a national holi-
day). However, if the retailer decides to promote some
of these items, the exclusivity constraint prohibits the
retailer to promote other competing items, say in the
set K2, at time t. For each block Bi, we compute the
maximum profit p1ðiÞ where no item in K1 is promoted
at time t (by simply deleting the nodes that promote
items in K1), as well as the maximum profit p2ðiÞ where
no item in K2 is promoted at time t. Finally, the maxi-
mum achievable profit can be obtained by maxfPi

p1ðiÞ;
P

i p2ðiÞg. In the worst case, we require solving
the profit maximization problem twice for each block.

6. Computational Experiments

In this section, we present computational experiments
to validate the efficiency and scalability of our meth-
ods. First, we test the exact dynamic program for a
single item using demand models calibrated from
data. Second, we apply our graphical method to the
reference price model from section 4. Third, we evalu-
ate the three proposed approaches for multiple items,
as discussed in section 5. The tests presented in this
section reflect realistic instances faced by supermarket
retailers.

6.1. Supermarket Data
Via a collaboration with Oracle Retail, we received a
large data set from several categories of items in
supermarkets. Specifically, we use aggregate weekly
sales data for several brands of coffee in 2009–2011.
We calibrate the demand models and observe that
our estimated demand yield a good out-of-sample
forecast accuracy. In particular, the out-of-sample R2

is between 0.85 and 0.96. We use ct ¼ 0:4; 8t, T = 35,
q0 ¼ 1, and qQ ¼ 0:4. More details on the data and
demand estimation can be found in Cohen et al.
(2017). All the tests were run using an Intel Xeon @
3.10GHz CPU with 125 GB RAM, and the dynamic
program was solved using Julia and Gurobi 6.0.0.

6.2. Single Item
As shown in Table 1, solving the dynamic program
based on our graphical representation scales linearly
with T. However, the runtime is exponential with m.
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Our goal is to test the runtime with respect to the differ-
ent problem parameters using realistic instances to
understand the limitations of our approach. As dis-
cussed in section 3.2, we expect to observe asymptotic
runtimes of OðTjQpjmÞ. In this section, we consider the
following log-log demand function estimated from data:

dt ¼ at exp
�� 3:277 logðptÞ þ 0:518 logðpt�1Þ

þ 0:465 logðpt�2Þ þ 0:2325 logðpt�3Þ
þ 0:115 logðpt�4Þ

�
;

where the coefficients at; t ¼ 1; . . .; 35 represent the
multiplicative seasonality effects and were estimated
to be between 759.4 and 975.7. In Figure 4, we plot
the runtime as a function of the price ladder size
(for T = 35) and as a function of the number of peri-
ods (using 8 price points). We consider three values
for the memory parameter (m = 2,3,4) and impose a
timeout of 2,000 seconds. For several item categories
in supermarkets, m is between 0 and 4. For instance,
for several coffee items, the memory parameter was
found to be equal to 2. The planning horizon ranges
between 10 and 52 weeks, and the number of price
points varies between 2 and 20.
One can see that when m = 2, our solution

approach solves the problem in less than a second.
This allows the retailer to perform several “what-if”
scenarios (sensitivity analysis tests) by varying the
demand parameters to obtain a robust solution. In
addition, for items without cross-item effects, one can
solve the problem for thousands of different items in
a few seconds. However, when the memory parame-
ter becomes large (e.g., m = 4), this is not the case any-
more, as our method can take several minutes to
solve a single instance. For example, with 12 prices
and m = 4, it takes more than 20 minutes. In such a

case, one can use our reference price approximation
(see section 4) that allows us to compute a near-opti-
mal solution in seconds, as shown in section 6.3.
We next study the effect of incorporating business

rules on the runtime of the dynamic program. As dis-
cussed in section 2.1, two of the main business rules
are limiting the number of price changes (denoted by
L) and imposing a separating period between succes-
sive price changes (denoted by S). We test these two
cases in Figure 5. We fix jQpj ¼ 8, T = 35, and vary L

and S. Adding the L constraint to the formulation
increases the number of possible states multiplica-
tively by L. Figure 5 is consistent with this analytical
result (the y-axis is in logarithmic scale). Incorporat-
ing the no-touch constraint and varying the value of S
have a relatively low effect on the runtime, which is
consistent with the asymptotic runtime of

OðT2jQpjd
m
SeÞ. We conclude that for large memory

parameters (i.e., m ≥ 4), solving the dynamic program
is not a viable option. Fortunately, in practice, a signif-
icant number of items in supermarkets admit a small
memory parameter. However, when m is large, one
can use the approximation based on the reference
price, as we discuss next.

6.3. Discrete Reference Price Model
While the exact dynamic program provides an effi-
cient method when m is low, instances with m ≥ 4 can
take several minutes (or even hours) to run (see Fig-
ures 4 and 5). We address this issue by considering
the discrete reference price model introduced in sec-
tion 4.1. We consider the following log-log reference
price-demand function:

dt ¼ at exp
�� 3:3pt þ 0:52rt

�
;

Figure 4 Runtimes as a Function of the Price Ladder Size (left) and the Number of Time Periods (right) [Color figure can be viewed at wileyonline
library.com]
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where the coefficients at; t ¼ 1; . . .; 35 represent the
multiplicative seasonality effects and are between
777.2 and 930.5. The reference price follows:
rt ¼ 0:6pt�1 þ 0:4rt�1 and r0 ¼ q0 ¼ 1. In Figure 6,
we investigate the runtimes of the dynamic program
for the discrete reference price model by varying the
reference price ladder precision e, the size of the
price ladder, and the number of periods. One can
see that the discrete reference price model can be
solved efficiently even with a large number of prices
and a granular reference price ladder (e = 0.025).
More precisely, all the instances we tested could be
solved within 0.1 second.
We next test the quality of the approximation pre-

sented in section 4.2. Our goal is to approximate a

demand function with a large memory parameter by
a discrete reference price model. We consider 100 ran-
domly generated instances of linear demand models
as in Equation (13). For each instance, we assume
m = T = 10 and jQpj ¼ 2 (i.e., q0 ¼ 1 and q1 ¼ 0:7)
and the following linear demand:

dt ¼ at � b0pt þ b1pt�1 þ b2pt�2 þ . . .b10pt�10;

where at and b0 are randomly drawn from a uni-
form distribution on [3000,5000] and [2000,4000],
respectively. The vector of parameters b1; . . .; b10 is
also randomly generated from a uniform distribu-
tion on ½0; 200�10. We then order the random vector
such that b1 � b2 � . . .� b10.

Figure 5 Runtimes as a Function of L (left) and S (right) [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6 Runtimes of the Dynamic Program with Reference Price When Varying e as a Function of the Price Ladder Size (left) and the Number of
Time Periods (right) [Color figure can be viewed at wileyonlinelibrary.com]
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For each instance, we obtain a linear demand func-
tion with a large memory parameter. We then follow
the procedure described in section 4.2 and fit a discrete
reference price model to approximate the true demand
function by finding the value of ~hLS for each instance.
We then solve the unconstrained dynamic program
and compute the optimal prices for the discrete refer-
ence price model with e = 0.001. For each instance, we
compare the total profit generated by these prices rela-
tive to the optimal prices obtained by solving the exact
(non-tractable) formulation under the true demand.
For most of the instances we considered, the approxi-
mated model based on the discrete reference price
model yields a near-optimal solution. In particular, the
minimum is 77.6%, the 25th percentile is 97.7%, the
median is 99.4%, and both the 75th percentile and the
maximum are 100% relative to the optimal profit. Con-
sequently, for demand models with a large memory
parameter, the approximation developed in section 4.2
allows us to solve the problem in milliseconds while
finding a near-optimal solution.

6.4. Reference Price Approximation
We next compare models with m = 2, m = 3, and
m = 4 when using the reference price approximation.
Specifically, we proceed as follows:

1. We generate several demand models with
m = 2. For consistency, we consider the same
functional form as in section 6.2. Specifically,
we use the same parameters for the seasonality
coefficients at and vary only the parameters
that multiply the prices (i.e., b0, b1, b2). As
before, we use a cost ct ¼ 0:4 for all t and con-
sider 8 price points between 0.4 and 1. We con-
sider three distribution families to generate the
price coefficients (Uniform, Beta, and Lognor-
mal). For example, we use a Uniform distribu-
tion between 0 and 5—that is, b0, b1,
b2 	U½0; 5�—and we then sort the parameters
so that b0 [ b1 [ b2.

2. We repeat the same procedure for demand
models with m = 3 and m = 4.

3. For each demand model, we approximate it
using the reference price model based on ~hLS.

4. We find the optimal prices using the reference
price approximation. We then evaluate the
total profit obtained under these prices (using
the true demand model).

5. We find the optimal prices and profits for the
true model (by solving the dynamic program)
and compute the optimal total profit.

6. We compute the relative ratio of the profits in
Steps 4 and 5 above. We repeat this procedure
across 10,000 independent trials and plot the
relative ratio (distribution and summary statis-
tics). We also consider several values of the
selling season (T = 10,15,20).6

As mentioned, we consider three distribution fami-
lies to generate the price coefficients. Each distribu-
tion has positive values and a mean equal to 2.5. This
corresponds to reasonable parameter values based on
our estimation results. We also made sure that our
generated demand models give rise to variation in
prices (i.e., we avoid the case where it is optimal to
have no price changes). The results are reported in
Figures A1–A3 in Appendix B. In each plot, the bars
represent (from top to bottom): the maximum, 75th
percentile, median, 25th percentile, and minimum.
The “+” signs underneath the minimum bar are con-
sidered as outliers. We also summarize the median
values in Figure 7.
As we can see from the results, the performance of

the reference price approximation is high across all
tested settings (i.e., different distributions to generate
the parameters and different values of T). Specifically,
the median ratio relative to the optimal profits always
exceeds 90%. As expected, the exact performance
depends on the specific instance (i.e., the combination
of parameters in the demand model). Interestingly,
the performance is not highly affected by the value of
T, the value of m, or the distribution of the parameters
(holding the mean constant). More precisely, we do
not observe a clear monotonic pattern with respect to
the value of m. Instead, we find that the performance
remains high for m = 2,3,4. We also consider the case
with a higher memory parameter and found similar
results. For example, the results for T = 15 and m = 8
when the demand-price coefficients are generated

Figure 7 Performance of the Reference Price Approximation for the Different Settings (median values across 10,000 independent trials)
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using the same Lognormal distribution as before are
reported in Figure A4 (using three price points in the
price ladder and 10,000 iterations). As we can see, the
performance remains high (the median of the profit
ratio is equal to 95.34%).
Finally, we consider an instance where the

demand-price coefficients decrease by a constant fac-
tor. Such a structural assumption helps capturing the
fact that further past prices have a smaller impact on
current demand. Specifically, we randomly generate
the coefficients b0 and b1 (using a Uniform distribu-
tion between 1 and 6). We also generate the parameter
h using a Uniform distribution between 0 and 1. We
then impose: b2 ¼ hb1, b3 ¼ hb2, and so on. We call
this model the truncated reference price model. We con-
sider T = 10 and vary m between 2 and 5 (similar
results were observed for different values of T and m).
The results are presented in Figure A5. As we can see,
the reference price approximation yields a good per-
formance throughout (in this case, the performance
seems to slightly decrease with m). However, for all
memory values we tested, we obtained that the med-
ian performance was higher than 91% relative to the
optimal profits.

6.5. Multiple Items
We now consider the setting with multiple items
and test the three methods developed in section 5.
Our goal is to compare the runtimes from Table 2.
We consider an instance with n = 100 items and
T = 10 periods. Our objective is to maximize the
total profit generated by all items during the sell-
ing season. For simplicity, we consider that all
items are identical (same demand functions and
cost value), impose a flat seasonality at ¼ 508t, and
that there are two prices (q0 ¼ 1 and q1 ¼ 0:7). We
then compare the runtimes of the three solution
approaches: (i) the dynamic program via the naive
model, (ii) the model with n discrete reference
prices from section 5.1, and (iii) the model with a
single discrete virtual reference price from section
5.2. Motivated by the discussion in section 5.3, we
cluster the 100 items into different blocks and vary
the number of items per block between 2 and 10.
We run the three approaches for each block and
record the corresponding runtime to solve the
problem for all 100 items. We set e = 0.1 and
impose a timeout of 12 hours.
In this section, we consider the following linear

demand functions for each item i = 1,. . .,100:

• Naive model: dit ¼ 50� 15pit þ 10pit�1 þ 5pit�2

þ P
j 6¼i 5p

j
t.

• Model with n reference prices: dit ¼ 50�
15pit þ 10rit þ

P
j 6¼i 5p

j
t.

• Model with a single virtual reference price:

dit ¼ 50� 15pit þ 10rVt þ P
j 6¼i 5p

j
t.

The reference prices follow: rit ¼ round½0:6pit�1

þ 0:4rit�1� with ri0 ¼ q0 ¼ 1 and rVt ¼ round

½0:6 1
100

P100
i¼1 p

i
t�1 þ 0:4rVt�1� with rV0 ¼ q0 ¼ 1 (we use

e = 0.1). Note that one can update the virtual refer-
ence price by either the average or the maximum of

the prices pit�1, as all items are identical. The results
are presented in Figure 8. For practical considerations,
our target is to solve the problem for 100 items in a
few minutes. Thus, one can see that the only viable
method is the model with a single virtual reference
price. This approach scales significantly better than
the two other methods, and thus allows us to solve
the problem for larger blocks of items in reasonable
time frames. Note that in practice, one could achieve
better runtimes by optimizing each block in parallel,
which would speed up the runtime multiplicatively
by the number of blocks.

7. Conclusion

In this study, we study the multi-item multi-period
pricing problem faced by supermarket retailers. Typi-
cally, this problem involves a non-linear demand
model that depends on current and past prices and
the presence of business rules. We introduce a graphi-
cal representation that translates the profit maximiza-
tion into solving a maximum weighted path problem
on a layered graph. We further prove that the prob-
lem is NP-hard by showing an approximation pre-
serving reduction from weighted Max-3-SAT
problem. We also develop a dynamic programming
solution method with a runtime of OðTjQpjmþ1Þ,
where T is the number of periods, m the memory
parameter (number of past prices that affect current
demand), andQp is the price ladder.
When m is large, this approach is not practical, as it

may take minutes (or hours) to solve a single instance.
Several categories of products can have a large m.

Figure 8 Runtimes for an Instance with 100 Items and 10 Periods
[Color figure can be viewed at wileyonlinelibrary.com]
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Typically, if the product is non-perishable (e.g., toi-
letries and laundry detergent), m can be between 4
and 8. In addition, even if we consider a memory of 2
with 50 products, solving the problem to optimality
can take several hours (or days). This motivates us to
develop an approximation solution approach. We first
consider the setting under a reference price model.
We propose to use the discrete reference price model
that restricts reference prices to lie in a discrete set
under the premise that customers do not form a refer-
ence price with infinite precision. Under this model,
we show how to solve the problem efficiently. We
then consider several demand functions (linear, log-
log, and log-linear) with a large m. We approximate
these demand functions using the discrete reference
price model—allowing us to solve instances with a
large memory in milliseconds, while having a perfor-
mance guarantee.
We then consider the problem for multiple items

and develop two solution approaches inspired by the
discrete reference price model. We assume that con-
sumers form a reference price either for each product
separately or a joint virtual reference price for the
entire category. To increase the tractability of our
approach, we introduce the notion of blocks and
organize items into small clusters so that cross-item
interactions across blocks are negligible. Although
this reduces the runtime of the profit maximization
problem for each block, it becomes more challenging
to impose global pricing constraints across blocks. By
borrowing ideas from combinatorial optimization, we
limit the number of price changes across blocks by
solving a multi-choice knapsack. We finally apply our
solution approach using demand models calibrated
with supermarket data and show that we can solve
realistic instances efficiently.
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Appendix A: Log-Log and Log-Linear
Demand Models
In this section, we study the log-log and log-linear
models. First, we present the analysis for the log-
reference price model that will be useful in finding a
tractable algorithm for the log-log model in Equation
(A6). In this case, the reference prices are maintained
and updated in the log space:

log rt ¼ ð1� hÞ log pt�1 þ h log rt�1; ðA1Þ
where 0≤h < 1 is a parameter that can be used to fit
the underlying (true) demand model. Note that this
is similar to the traditional reference price model in
Equation (4) but the update is in the log space. The
log-log reference price and the log-linear reference
price-demand models are given by:

log dtðpt; rtÞ ¼ ftðptÞ þ gðlog pt � log rtÞ; ðA2Þ
log dtðpt; rtÞ ¼ ftðptÞ þ gðpt � rtÞ: ðA3Þ

We do not impose any assumption on ftð�Þ and
assume that g(�) is G-Lipschitz.
We next consider the discrete log-reference price

model by discretizing the log space of reference prices
so that the reference price at time t is given by (the exact
way of rounding does not affect any of our results):

log r̂t ¼ round
h
ð1� hÞ log pt�1 þ h log rt�1

i
: ðA4Þ

More precisely, we round to the nearest element in
the set Qlog ¼ fr0 [ r1 [ � � � [ rn [ . . . [ rNg,
where log ri ¼ log riþ1 þ � for all i=0,. . ., N � 1. Using
this rounding procedure, we show that the propa-
gated difference between the continuous and dis-
crete reference prices at time t varies linearly with e
and with the continuous reference price.

PROPOSITION 5. Consider the continuous log-reference price
model from Equation (A1) and the discrete log-reference
price model with precision e > 0 as in Equation (A4). Then,
the difference in the reference prices at time t is bounded by:

ĵrt � rtj � 1� ht�1

1� h
rt�; ðA5Þ

where rt and r̂t denote the continuous and discrete refer-
ence prices at time t, respectively.

PROOF. For the first period, we have: log r̂1 ¼ roundh
ð1�hÞ logp0 þ h logr0

i
. Therefore, we obtain: log r̂1 ¼

ð1�hÞ logp0 þ h logr0� �which implies r̂1 ¼ p
ð1�hÞ
0 rh0e

��


 p
ð1�hÞ
0 rh0ð1� �Þ, where we used the approximation

ex 
 1 þ x for x 2 (0,1),x�1.We then have: r1ð1� �Þ� r̂1
�r1ð1 þ �Þ.
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We next proceed by induction on t > 1. We assume

that for t ≤ k, r̂k ¼ rkð1� �Þ
Pk�1

u¼0
hu and show the claim

for t = k + 1. We have: log r̂kþ 1 ¼ roundh
ð1� hÞ log pk þ h log r̂k

i
. Then, we obtain:

r̂kþ1 ¼ p1�h
k r̂hke

�� ¼ p1�h
k rhkð1� �Þ

Pk�1

u¼0
hðuþ1Þ

e��


 p1�h
k rhkð1� �Þ

Pk

u¼0
hu ¼ rkþ1ð1� �Þ

Pk

u¼0
hu :

Therefore, rkþ1ð1�
Pk

u¼0 h
u�Þ� r̂kþ1 � rkþ1ð1þ

Pk
u¼0

hu�Þ concluding the proof.
We next quantify the difference in demand and

profit.

COROLLARY 2. Consider the log-log demand model from
Equation (A2) and the discrete log-reference price model
with precision e > 0. Then, the demand value at time t
and the difference in the total profit are bounded by:

d̂t ¼ dt expðgðlog pt
rt
Þ � gðlog pt

r̂t
ÞÞ� dt expðG log

r̂t
rt
Þ


 dt expðG logð1�
Xt

u¼0

hu�ÞÞ� dt expðG�
Xt

u¼0

huÞÞ;



P̂�P




�ðmax
t

dtÞTðq0 � cminÞG�=ð1� hÞ;

where d̂t and P̂ denote the demand and profit at time t,
respectively, using the discrete log-reference price model.
Here, cmin denotes the minimal cost value, cmin ¼
mint ct, and e � 1.

Finally, we extend the analysis for the log-linear ref-
erence price model in Equation (A3). In this case, we
use the traditional reference price model as in section 4.

COROLLARY 3. Consider the log-linear demand model
from Equation (A3) and the discrete reference price model
with precision e > 0. Then, the demand value at time t and
the difference in the total profit are bounded by:

d̂t ¼ dt expðgðpt � rtÞ � gðpt � r̂tÞÞ� dt expðGð̂rt � rtÞÞ

� dt expðG�ð1þ
Xt

u¼0

huÞÞ;



P̂�P





�ðmax

t
dtÞTðq0 � cminÞG� 2� h

1� h
;

where d̂t and P̂ denote the demand and profit at time
t, respectively, using the discrete reference price
model.

As a result, we obtain constant gap guarantees for
the optimal profit. Observe that the maximum possi-
ble demand over all time periods, maxt dt, can be
easily obtained from the context.
Approximating the log-log and log-linear demand

models. As in section 4.2, for ease of exposition, we
present our analysis on the approximation gap rela-
tive to the continuous reference price model (recall
that the discrete model approaches the continuous
model when e tends to 0). We next extend the results
of section 4.2 to the log-log and log-linear demand
models, given by:

log dtðptÞ ¼ ftðptÞ þ b1 log pt�1 þ � � � þ bT log pt�T;

ðA6Þ

log dtðptÞ ¼ ftðptÞ þ b1pt�1 þ � � � þ bTpt�T: ðA7Þ
This type of models are popular in retail applica-
tions such as supermarkets. The parameters
b1; . . .; bT and the functions ftð�Þ can be estimated
from data. As in section 4, we assume that the gain
parameters are non-negative and non-increasing:
b1 � . . .bT � 0.
Using the continuous log-linear reference price and

the log-log reference price models, we approximate
Equations (A6) and (A7) as follows:

log edtðpt; ertÞ ¼ ftðptÞ þ gðlog pt � log ertÞ
¼ ftðptÞ þ ~/

XT
k¼1

ð1� ~hÞ~hk�1 log pt�k; ðA8Þ

log edtðpt; ertÞ ¼ ftðptÞ þ gðpt � ertÞ
¼ ftðptÞ þ ~/

XT
k¼1

ð1� ~hÞ~hk�1pt�k: ðA9Þ

Following the same procedure as in section 4.2, we
impose ~/ð1� ~hÞ ¼ b1 to match the coefficient of pt�1.
Then, ~h can be computed as the minimum, maximum,
or least-squares fit. Thus, we obtain the same result as
in Proposition 4 for the log-log and log-linear demand
models.
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Appendix B: Testing the Reference Price
Approximation

Figure A1 Performance of the Reference Price Approximation (price coef-
ficients are distributed U(0,5), T = 10,15,20, and m = 2,3,4)
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure A2 Performance of the Reference Price Approximation (price coeffi-
cients are distributed 10Beta(1,3), T = 10,15,20, and m = 2,3,4)
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure A3 Performance of the Reference Price Approximation (price
coefficients are distributed (2.5/exp(5.5))Lognormal(5,1),
T = 10,15,20, and m = 2,3,4) [Colour figure can be viewed
at wileyonlinelibrary.com]

Figure A4 Performance of the Reference Price Approximation for a Trun-
cated Reference Price-Demand Model (T = 15 and m = 8)
[Colour figure can be viewed at wileyonlinelibrary.com]
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Notes
1This study applies for both price changes and promotions
(a price change at time t is defined such that pt 6¼ pt�1,
whereas a promotion is a temporary reduction from the
regular price q0). To avoid confusion, we only present the
case of price changes.
2We are ignoring the dependence in the memory parame-
ter (m) in the order notation.
3We say that f(T) = Ω(g(T)), when there exists a constant c
such that f(n) ≥ cg(n) for all sufficiently large n.
4The exact way of rounding does not affect any of our
results, so we simply round to the closest element in Qr.
5For ease of exposition, we present our analysis of the
approximation gap relative to the continuous reference
price model (recall from Proposition 2 that the dis-
crete model approaches the continuous model when e
tends to 0). In other words, Equation (14) is obtained
using continuous reference prices (and not dis-
cretized).
6We did not consider the combination T = 20 and m = 4
as it requires several days to run this case, without adding
further insights.
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