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Abstract. We consider the problem faced by a firm that receives highly differentiated
products in an online fashion. The firm needs to price these products to sell them to its
customer base. Products are described by vectors of features and the market value of each
product is linear in the values of the features. The firm does not initially know the values of
the different features, but can learn the values of the features based on whether products
were sold at the posted prices in the past. This model is motivated by applications such as
online marketplaces, online flash sales, and loan pricing. We first consider a multidi-
mensional version of binary search over polyhedral sets and show that it has a worst-case
regret which is exponential in the dimension of the feature space. We then propose a
modification of the prior algorithm where uncertainty sets are replaced by their Löwner-
John ellipsoids. We show that this algorithm has a worst-case regret which is quadratic in
the dimension of the feature space and logarithmic in the time horizon. We also show how
to adapt our algorithm to the case where valuations are noisy. Finally, we present
computational experiments to illustrate the performance of our algorithm.
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1. Introduction
Most dynamic pricingmodels assume that a firm sells
identical products to its customer base over time.
Even the models that do allow for product differen-
tiation generally assume that the seller offers a man-
ageable number of distinct products. However, there
exist important business settings, such as online
marketplaces, where sellers offer an enormous number
of different products to its customer base. Our paper
addresses the following problem: how should a seller
price its products when they arrive in an online fashion
and are significantly differentiated from each other?

Specifically, we consider a firm selling products to
customers over a finite time horizon. In each period, a
new product arrives, and the firm must set a price for
it. The product features are chosen antagonistically
by nature. The firm can base its pricing decision on
the features of the product at hand, as well as on the
history of past prices and sales. Once a price is cho-
sen, the product is either accepted or rejected by the
market, depending on whether the price is below or
above the product’s market value. The firm does not
know the market value of each product, except for the
fact that the market value of each product is linear in
the value of the product features. (We also consider
some commonly used nonlinear models in Section 7.)
The seller can therefore use past prices and sales data

to estimate the market values of the different features
and use those estimates to inform future pricing
decisions. Our goal is to find a pricing algorithm that
performswell in the sense that it generates a lowworst-
case regret. Our concern is how the regret scales with
the time horizon, as well as how it performs with re-
spect to the dimension of the feature space. Assuming
the feature vectors are chosen antagonistically by nature
ensures that our solution is robust to important con-
siderations such as features appearing in correlated form
and the set of relevant features changing over time.
(Some features may have zero value throughout most of
the time horizon but may be important in later periods.)
Our first attempt is to propose a multidimensional

version of binary search in order to learn the values of
the different features. In each period, the seller rep-
resents the possible values of the different features
by a polyhedral-shaped uncertainty set. Whenever
a new product arrives, the seller solves two linear
programs: one to compute the maximum possible mar-
ket value of the product, and the other to compute the
minimum possible market value of the product given
the uncertainty set. If these two numbers are close
together, the seller uses theminimumpossiblemarket
value as an “exploit” price, in order to ensure that a
sale occurs. If these two numbers are far apart, the
seller performs a binary search step (or “explore”
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step) and chooses a price halfway between the min-
imum and the maximum possible market values.
We call this algorithm PolytopePricing. However,
despite seeming to be a suitable algorithm for the
problem at hand, we show in Theorem 1 that this al-
gorithm has a worst-case regret that is exponential in
the dimension of the feature space. This occurs be-
cause nature can choose a sequence of vectors of fea-
tures that forces the seller to explore for exponentially
many periods without exploiting.

Fortunately, we can modify PolytopePricing to
make it a low-regret algorithm. The modification in-
vokes an idea from the ellipsoid method for solving a
system of linear equations. At every step of the algo-
rithm, we replace the convex uncertainty set (previ-
ously a polytope) by its Löwner-John ellipsoid. The
Löwner-John ellipsoid of a convex body is the mini-
mal volume ellipsoid that contains that convex body.
We call thismodified algorithmEllipsoidPricing. The
main result of our paper is Theorem 2, which proves
that EllipsoidPricing generates a worst-case regret
that is quadratic in the dimension of the feature space
and logarithmic in the time horizon. The proof is
based on two ideas. The first is the classical idea from
the ellipsoid method: the volume of the ellipsoidal
uncertainty set shrinks exponentially fast with the num-
ber of cuts. (In our problem, the cuts are explore prices.)
The second main idea is that, under EllipsoidPricing,
the smallest radius of the ellipsoid cannot shrink
below a given threshold. To prove this second idea,
we build on linear algebra machinery that charac-
terizes the evolution of the eigenvalues after rank-one
updates. This machinery is useful because an ellip-
soid can be represented by a matrix whose eigen-
values correspond to the squares of the ellipsoid radii
and because using an explore price corresponds to
performing a rank-one update. Combining the two
ideas, we get a quadratic bound on the number of
possible explore steps, which yields our bound on the
regret of the algorithm. The EllipsoidPricing algo-
rithm is also computationally more efficient than
PolytopePricing, since it does not require solving
linear programs in each iteration. In fact, all com-
putational steps—optimizing a linear function over
an ellipsoid and replacing a half-ellipsoid by its own
Löwner-John ellipsoid—require nothing more than
matrix-vector products.

The basic form of ELLIPSOIDPRICING assumes that the
market value of each product is a deterministic func-
tion of its features. We also propose two variants of the
algorithm that add robustness to noisy valuations. We
call the first one SHALLOWPRICING. The SHALLOWPRICING

algorithm is based on the idea of a shallow cut of
an ellipsoid, which is an off-center cut, designed to
maintain more than half of the original uncertainty
set. By using shallow cuts, we can add a safety margin

to each cut and, hence, still obtain similar regret guar-
antees under a low-noise regime. Our second proposal
is an algorithm we call ELLIPSOIDEXP4, which is a
combination of SHALLOWPRICING with the standard
adversarial contextual bandit algorithm EXP4. For
ELLIPSOIDEXP4, we show a regret guarantee that
(i) matches the bound of ELLIPSOIDPRICING in the limit
when the noise vanishes, (ii) approximately matches
the regret guarantee of EXP4 under high-noise set-
tings, and (iii) leads to an intermediate-regret guar-
antees in moderately noisy environments. We discuss
these algorithms and their regret guarantees in detail
in Section 6.
Online marketplaces are one area in which the al-

gorithms we develop in this paper can be applied.
Consider Airbnb, the popular sharing economy plat-
form for subletting homes and individual rooms. The
products in Airbnb are stays, which are highly differ-
entiated products: they involve different locations, ame-
nities, and arrival dates, among many other features.
Airbnb offers a service to its hosts called Smart Pricing,
which, when turned on, allows Airbnb to choose prices
on the hosts’ behalf (see Bray 2017, Ye et al. 2018). As
in our model, if a given good (in this case, a one-night
stay in a home at a particular date) is not sold, it gen-
erates no revenue and becomes obsolete.1 To offer a
service such as Smart Pricing to its hosts, a platform
like Airbnbmust use a feature-based dynamic pricing
algorithm following the same spirit as our algorithms.
Other online marketplaces, such as eBay and Etsy,
could also use an algorithm such as ours to help sellers
price their products.
An additional application is online flash sales web-

sites such as Gilt, Rue La La, and Belle & Clive. These
vendors periodically receive various goods from
luxury brands to sell online. Usually, a flash sale
lasts for a short time period, and the vendor needs to
choose the price of each good. As in our model, the
owner sells highly differentiated products andmust
set prices to balance exploration and exploitation.
There also exist classical markets that involve highly
differentiatedproducts that arrive over time, such as the
high-end art and premium wine markets. The algo-
rithms we propose in this paper may also be useful in
these contexts since it is natural to set prices based on the
values of the product features.
One of the key applications that has motivated the

dynamic pricingwith learning literature is the pricing
of financial services (see Phillips 2005, Harrison et al.
2012, Keskin and Zeevi 2014). Consider a bank of-
fering loans or other forms of consumer credits. After
a consumer requests a loan, the bank must select a
price (an interest rate), which the consumer can accept
or reject. This literature studies how such a bank
should balance immediate profit maximization with
price exploration. A typical assumption in this literature
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is that consumers are indistinguishable from each other.
In reality, consumers have several features (e.g., credit
history, annual income, FICO score) which can be used
by the bank toprice loans.Withour framework, the bank
would be able to take these features into account when
choosing interest rates to offer individual customers.

2. Related Literature
Our work lies at the intersection of two literature
streams: dynamic pricing with learning and contex-
tual bandits, and is also connected to learning from
revealed preferences, conjoint analysis, and the el-
lipsoid method from optimization theory.

2.1. Dynamic Pricing with Learning
The literature on dynamic pricingwith learning studies
pricing algorithms for settings where the demand
function is unknown. The problem is typicallymodeled
as a variant of the multiarmed bandit problem, where
the arms represent prices and the payoffs from the
different arms are correlated since the measures of
demand evaluated at different price points are corre-
lated random variables. The first paper that modeled
dynamic pricing as a multiarmed bandit problem is
Rothschild (1974). Kleinberg and Leighton (2003)
deserve credit for formulating the finite-horizon, worst-
case regret version of the problem of dynamic pricing
with learning, a formulation that we use in our paper. In
particular, they solve the one-dimensional version of
our problem, as we discuss in Section 4.1. A large body
of literature has recently emerged studying this topic.
This includes both parametric approaches (Araman
and Caldentey 2009, Broder and Rusmevichientong
2012, Harrison et al. 2012, Chen and Farias 2013, den
Boer and Zwart 2013, Besbes and Zeevi 2015) as well
as nonparametric ones (e.g., Besbes and Zeevi 2009,
Keskin and Zeevi 2014). The literature also includes
models that, like ours, use a robust optimization ap-
proach to model uncertainty (see, e.g., Bertsimas and
Vayanos 2015). Another important dimension in pric-
ing problems is that of limited supply (Besbes and
Zeevi 2009, Babaioff et al. 2015, Badanidiyuru et al.
2018). For example, Badanidiyuru et al. (2018) study a
problemwhere the seller has a fixed number of goods,
so s/he must trade off learning and earning not only
across time but also across supply levels. The authors
provide near optimal results for this setting. In fact,
their result is cast in a more general setting of bandits
with knapsacks, where bandit algorithms have resource
constraints. In their follow-up paper, Badanidiyuru
et al. (2014) extend this analysis to contextual set-
tings and obtain a nontrivial improvement over the
standard reduction to contextual settings. This line of
work has been further improved in a series of pa-
pers byAgrawal andDevanur (2015a, b) andAgrawal
et al. (2016).

2.2. Contextual Bandits
A crucial aspect of our model is that products arrive
over time and are characterized by vectors of features.
The literature that studies multiarmed bandit prob-
lems in settings where the payoff in each period de-
pends on a particular set of features (that are relevant
only for a specific period) is called contextual bandits.
This literature startedwithAuer et al. (2002) andAuer
(2003) and has recently grown into a large literature
(see, e.g., Dudik et al. 2011, Agarwal et al. 2014). Auer
et al. (2002) proposed a regret-optimal algorithm for
contextual bandits called EXP4 that we use as a
building block in one of our algorithms in Section 6.
Many models of contextual bandits (but certainly not
all) assume that payoffs are linear in the feature vector
(Chu et al. 2011, Abbasi-Yadkori et al. 2011, Agrawal
andDevanur 2015a). In ourmodel, wemake a slightly
different assumption: we assume market values are
linear in the features. Products having market values
which are a function of their features is a typical
assumption in marketing, which is referred to as
hedonic pricing (see Milon et al. 1984, Malpezzi 2002,
Sirmans et al. 2005).
In a related work by Chu et al. (2011), the authors

propose an algorithm called LinUCB that also uses
ellipsoids to design uncertainty regions in contextual
learning settings, but both the problem they study
and the resulting algorithms are very different from
ours. In Chu et al. (2011), the payoffs are assumed to
be linear in the context and are observed for the arm
played. In our model, in contrast, the payoffs are
discontinuous pricing functions and we only observe
whether there is a sale or not. Also, the updates in
Chu et al. (2011) are not based on cuts (as in our al-
gorithm) but on high-dimensional statistical bounds.

2.3. Pricing with Features
Closest to our paper is the work by Amin et al. (2014),
which also studies a feature-based dynamic pricing
problem. In their model, features are stochastically
drawn from a distribution, whereas in our model,
features are adversarially selected by nature. Amin
et al. (2014) propose an algorithm that is based on
stochastic gradient descent and obtain a regret bound
of Õ(T2/3).2 However, they do not investigate how
their algorithm performs with respect to the dimen-
sion of the feature set. In their stochastic setting, Amin
et al. (2014) also analyze a version of the algorithm in
which buyers strategically react to the algorithm.
In a paper subsequent to ours, Qiang and Bayati

(2016) also consider a dynamic pricing problem in a
model where the value of different features (or cova-
riates) needs to be learned. Their model is stochastic,
as opposed to our adversarial model, and features
arrive in an independent and identically distributed
(i.i.d.) fashion. They show that a greedy least-squares
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approach performs well, which is not the case in a
model without covariates. Approaches based on least
squares can be used in stochastic models, but not in
adversarial models such as the model considered in
this paper.

2.4. Learning from Revealed Preferences
There exist additional learning problems for which
researchers have developed techniques that are
somewhat related to the algorithm we propose in this
paper. In the problem called “learning from revealed
preferences,” a seller sells an identical bundle of
goods in each period to a single buyer. The seller does
not know the utility function of the buyer but can learn
from the past bundles purchased by the buyer. Amin
et al. (2015) and Roth et al. (2016, 2017) study the
problem of dynamic pricing in multiple dimensions
and propose several algorithms for this problem,
some of which are, like our algorithm, based on the
ellipsoid method (Khachiyan 1979). There are at least
two important differences between this line of work
and our paper. First, no features are present in this
line of work. Second, the decision variable in our
problem at each time period is a single price, while in
this literature the seller selects a price for each item at
each period. An algorithm that selects multiple prices
in each period may seem more general than an al-
gorithm that selects only a single price per period, as
in our setting. However, this intuition is misleading.
When applying the ellipsoid method to the problem
of learning from revealed preferences, one can choose
the direction of each cut by selecting an appropriate
vector of prices. In our problem, however, we are
given a cut direction chosen adversarially by nature
(the vector of features), and thus, we are only able to
select where to position the hyperplane.

2.5. Conjoint Analysis
Another related field of study is adaptive choice-
based conjoint analysis, where a market researcher
wants to design an adaptive survey to elicit the prefer-
ences of individuals in a population. Though the
problem is different from ours, some of the most
commonly used solutions share with our algorithm
the property that they heavily rely on the geometry of
polyhedra and ellipsoids (see, e.g., Toubia et al. 2003,
2004, 2007; Bertsimas and O’Hair 2013). A key dis-
tinction that makes our problem more difficult to
solve than conjoint analysis is that we cannot choose
directions of cuts (vectors of features), while the
market researcher in conjoint analysis is allowed to
do so.

2.6. The Ellipsoid Method
One of the key ideas that we use in our paper is to
replace an uncertainty set that is polyhedral by its

Löwner-John ellipsoid. This idea is not novel, dating
back to Khachiyan (1979)’s proof that linear programs
are solvable in polynomial time. There are several key
advantages of using ellipsoids instead of polyhedra.
In particular, it is easy to cut an ellipsoid through its
center. In addition, by cutting an ellipsoid through
its center and replacing the remaining half-ellipsoid
with its own Löwner-John ellipsoid, a fixed fraction
of the volume is removed. The idea of replacing poly-
hedra with ellipsoids has been used in other papers
after Khachiyan (1979), including Toubia et al. (2003,
2004, 2007). Removing a fixed fraction of the volume
of the uncertainty set in each iteration is also a well-
known idea and has found applications in preference
elicitation (Boutilier et al. 2006) and recommender
systems (Viappiani and Boutilier 2009). Several of the
challenges that emerge in our problem are related to
(i) not being able to control the direction of cuts and,
thus, not being able to cut orthogonally to the di-
rection in which the uncertainty is the largest, as the
aforementioned papers do; and (ii) having to manage
not only the volume, but also the radii of the ellipsoids
since the regret in our model is a function of the length
of an ellipsoid along a direction chosen by nature.

3. Model
Consider a setting with a seller that receives a dif-
ferent product at each time period t � 1, 2, . . . ,T. Each
product is described by a vector of features xt ∈ - ⊂
Rd and has a market value vt � v(xt), which is un-
known to the seller. Upon receiving each product, the
seller observes the vector of features xt and then
chooses a price pt. The market either accepts the price,
which occurs if the price pt is less than or equal to the
market value vt, or rejects it, in which case the product
is lost.3 The goal of the seller is to design a pricing
policy to maximize revenue. The main challenge here
is that the market value is unknown to the seller, and
at each time, the seller wants to earn revenues but also
to refine his/her knowledge about the market value
function v.
In order for this problem to be tractable, we need to

make assumptions about the market value function v.
We assume that the market value of a product is a
linear function of its features, that is, vt � θ′xt, an
assumption that we partially relax in Section 7. We
also assume for the sake of normalization that ||xt|| ≤ 1
for all xt ∈ - and that ||θ|| ≤ R, where ||·|| refers to the
�2-norm. The exact value of θ is unknown to the seller.
We encode the initial uncertainty of the seller as a
polytope K1 ⊆ Rd, which represents all feasible values
of θ. The set K1 could either be a d-dimensional box or
encode some initial domain-specific knowledge about
the problem.
The seller sets a price pt at each time period and

collects revenues if a sale occurs. If the price selected
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by the seller is below or equal to themarket value, that
is, pt ≤ θ′xt, a sale occurs and the seller earns a rev-
enue of pt. If the seller sets pt > θ′xt, no sale occurs and
no revenue is generated. At each time period, the
seller may learn some new information about the
value ofθ that can be used in subsequent time periods.
More precisely, the seller naturally updates the un-
certainty set with Kt+1 � Kt ∩ {θ ∈ Rd : θ′xt ≥ pt} or
Kt+1 � Kt ∩ {θ ∈ Rd : θ′xt ≤ pt}depending onwhether
a sale occurred or not, whereKt denotes the uncertainty
set at time t.4

Our goal is to find a simple and computationally
efficient dynamic pricing policy that achieves a good
performance in terms of regret. Let Π be the seller’s
policy, and let X be the strategies available to nature.
(Nature adversarially selects the true value of the
parameter θ and the feature vectors xt in each round.)
Both the seller and nature are allowed to use closed-
loop policies, where their actions at time t depend on
the history of events up to time t − 1. The worst-case
regret induced by policy Π is given by

Regret(Π) � max
θ∈K1,X∈X

∑T
t�1

[
θ′xt − ptI{θ′xt ≥ pt}

]
, (1)

where I{·} denotes the indicator function and X ∈ X

represents the policy used by nature to select the
sequence of feature vectors {xt}. The first term inside
the summation corresponds to the maximal revenue
the seller could extract if s/he knew the value of θ,
and the second term is the actual revenue generated
by policy Π for a given (θ,X) pair. We are concerned
not just with how the regret scales with T, as is typical
inmultiarmed bandit problems, but alsowith how the
regret scaleswith the dimension of the feature space d.

Most of the paper focuses on the model described
above where the valuation is a fixed linear function of
the item’s features. This serves as the main building
block for tackling richer models. We consider exten-
sions in two directions: noisy and nonlinear valuations.
The settingwith noisy valuations is studied in Section 6.
A special case of nonlinearity is addressed via a
Lipschitz continuity argument in Section 7.

4. A First Attempt: Multidimensional
Binary Search

4.1. The One-Dimensional Problem
The simplest special case of our problem iswhen there
is only a single dimension, that is, d � 1. Assume
further thatR � 1, that is,θ ∈ [0, 1] and xt � 1 for every t.
(Note that the exact value of xt does not affect the
problem in the one-dimensional case.) Then, the prob-
lem consists of picking a price pt in each time step and
collecting revenue pt · I{pt ≤ θ}. A natural strategy
is to perform binary search for a few steps, build a
good estimate of θ, and then set the price using this

estimate. More precisely, start with K1 � [0, 1], for
each step t, keep Kt � [�t,ut], and then set the price
pt � 1

2 (�t + ut). If a sale occurs, set Kt+1 � [pt,ut], and
otherwise, set Kt+1 � [�t, pt]. Repeat this as long as
ut − �t ≥ ε, for some ε > 0. From this point onward, set
the price at pt � �t. Note that, under this price, the
seller is guaranteed to sell the item. The algorithm
uses log2(1ε) steps to build a good estimate of θ, and
from then onward, uses the lower estimate to price.
It is not hard to see that the total regret is

Regret ≤ log2
1
ε

( )
+ T − log2

1
ε

( )( )
· ε

� O(log2 T) for ε � 1
T
.

This regret is surprisingly not optimal for the one-
dimensional problem. Kleinberg and Leighton (2003)
show that the optimal regret for the one-dimensional
problem isO(ln lnT). This result implies a lower bound
of Ω(d ln lnT) for any algorithm in our multidimen-
sional problem.Determining ifKleinberg and Leighton
(2003) is extendable to higher dimensions is a difficult
problem that we do not attempt to address. Instead, we
focus on the simpler binary search algorithm, which
has sufficiently low regret in T, O(lnT), and aim to see
if we can generalize it to higher dimensions.

4.2. Binary Search in High Dimensions
We now return to our original setting with d dimen-
sions and features xt chosen adversarially by nature.
Our first instinct might be to follow the same ap-
proach, use the first few iterations to build a good
estimate of θ (we call this the explore phase), and then
use this estimate to set a close-to-optimal price (we
call this the exploit phase). One problem with this
approach is that the features selected by nature may
never offer an opportunity for the seller to learn θ
precisely. Some features might not appear with a
nonzero value often enough to allow for their values to
be learned. Featuresmight also be chosen in a correlated
fashion by nature, making learning more difficult. Fi-
nally, even in the case where all the different features
are present and not correlated, it might still not be wise
for the seller to wait until s/he reaches a good estimate
of θ to start exploiting, as some features may only ap-
pear with nonzero values close to the time horizon T.
We therefore need an algorithm that dynamically
decides whether to explore in each period, rather than
having fixed exploration and exploitation phases.

4.3. Explore and Exploit Prices
Based on our discussion so far, we know that we
cannot hope to learn the value of θ exactly. Also,
predetermined exploration and exploitation phases
do not seem to be adequate here. Instead, for each
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product that arrives, we will decide whether to ex-
ploit or not. In particular, we will exploit if we have
gathered enough information on the market value
for this particular set of features.

To evaluate the amount of information we have for
the feature vector xt, the seller can use the current
uncertainty set Kt to compute an interval [bt, b̄t] that
contains the actual market value vt � θ′xt, by solving
the following pair of linear programs:

bt � min
θ̂∈Kt

θ̂′xt and b̄t � max
θ̂∈Kt

θ̂′xt. (2)

By pricing the item at pt � bt, the seller is guaranteed
to sell the item and generate revenue bt. However, the
seller will learn nothing about the market value from
such a price. We call such a price an exploit price. In-
spired by binary search, we define an explore price as
the price that will provide us with the most infor-
mation about the buyer’s valuation for that particular
feature vector, which is pt � 1

2 (b̄t + bt).
In the simple two-dimensional examples shown in

Figure 1, the explore price always divides the feasible
region into two parts, whereas the exploit price is al-
ways located at the boundary of the set. Note that, by
definition, an exploit price guarantees some revenue,
while an explore price may or may not generate a sale.

Now, we describe the algorithm PolytopePricing,
which is parameterized by a threshold value ε > 0.
Starting from an initial uncertainty set K1, for each t,
compute the values bt and b̄t. If b̄t − bt ≤ ε, set the ex-
ploit price pt � bt, collect revenue pt, and set Kt+1 � Kt.
If b̄t − bt > ε, set the explore price pt � 1

2 (b̄t + bt). If a
sale occurs, update the uncertainty set to Kt+1 �
Kt ∩ {θ ∈ Rd : θ′xt ≥ pt}. Otherwise, update it toKt+1 �
Kt ∩ {θ ∈ Rd : θ′xt ≤ pt}.

4.4. The Exponential Regret of PolytopePricing
Although PolytopePricing is a straightforward gen-
eralization of the single-dimensional binary search

algorithm, it is far from an ideal algorithm. First, it
needs to keep track of a complicated polytope. Sec-
ond, each step is computationally expensive as it
requires solving two linear programs.
Furthermore, for any parameter ε > 0, the worst-

case regret of PolytopePricing is exponential in d. The
proof of this result is presented in the online appendix.

Theorem 1. For any parameter ε > 0, the algorithm
PolytopePricing suffers worst-case regret Ω(Rad lnT)
for some constant a > 1.

We remark that the proof of Theorem 1 shows that
the PolytopePricing algorithm has exponential re-
gret in d even for an adversary that draws the feature
vectors from a very simple i.i.d. distribution that
samples 1/4 of the features.

5. Ellipsoid Pricing
In this section, we modify the POLYTOPEPRICING algo-
rithm from the previous section to achieve a regret
that is polynomial (in fact, quadratic) in the dimension.
As a bonus, the algorithm also becomes simpler to im-
plement and computationally cheaper. The algorithm
now requires only that we maintain a d × d matrix and
perform a fewmatrix-vector products in each iteration.
Our new algorithm is inspired by Khachiyan’s

celebrated ellipsoid method (Khachiyan 1979). The
central idea is that, instead of keeping the uncertainty
setKt in each iteration, we “round” it up to the smallest
ellipsoid Et that contains Kt. This is often referred to as
the Löwner-John ellipsoid of the set Kt.
We call our algorithm EllipsoidPricing. The algo-

rithm starts from the smallest ellipsoid E1 that con-
tains K1 or, in fact, any ellipsoid that contains K1 (see
Figure 2). At each time step t, the algorithm computes
the values bt and b̄t using the ellipsoid Et instead of
the uncertainty set Kt:5

bt � min
θ̂∈Et

θ̂′xt and b̄t � max
θ̂∈Et

θ̂′xt. (3)

Figure 1. (Color online) Explore and Exploit Prices When x1 � (1, 0) and x1 � (1/ ̅̅
2

√
, 1/

̅̅
2

√ )
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If b̄t − bt ≤ ε, the seller offers the exploit price pt � bt,
collects revenue pt, and sets Et+1 � Et (see Figure 3). If
b̄t−bt > ε, the seller offers the explore price pt � 1

2(b̄t +bt).
If a sale occurs, let Ht+1 � Et ∩ {θ ∈ Rd : θ′xt ≥ pt}.
Otherwise, let Ht+1 � Et ∩ {θ ∈ Rd : θ′xt ≤ pt}. Now,
let Et+1 be the smallest ellipsoid that contains the half-
ellipsoid Ht+1 (see Figures 4 and 5). Our main result
is reported next.

Theorem 2. The worst-case regret of the EllipsoidPricing
algorithm with parameter ε � Rd2/T is O(Rd2 ln(T/d)).

We defer the proof of this theorem until Section 5.3.
Interestingly, efficiency is achieved by enlarging
the uncertainty set. At the expense of adding candi-
date vectors θ̂ that are known not to be the true θ
(when we enlarge Ht+1 to Et+1) at each iteration t,
we are regularizing the uncertainty sets. In other
words, we are making the uncertainty sets sym-
metric and easier to analyze. We are not the first to
propose this kind of technique. The same principle
was at play in Khachiyan’s (1979) proof that the el-
lipsoid method solved linear programming in poly-
nomial time, as well as in more recent papers that
also rely on the underlying mechanics of the ellipsoid
method.

The reader familiar with the mechanics of the el-
lipsoid method will readily recognize it here: we start
with an ellipsoid; at each time we find a hyperplane
passing through its center, we cut it in half; and we
replace the remaining half by its smallest enclosing el-
lipsoid. The guarantee that the ellipsoid method offers
is that the volume of the ellipsoid decreases at each
time step. More precisely, after n cuts (which in our
case correspond to n exploration rounds), the volume
of the ellipsoid is at most e− n

2d of the original volume.
However, it provides no guarantee about the shape
of the ellipsoid. An ellipsoid of small volume could
definitely be very skinny in some dimensions, but
quite long in other dimensions.
To prove Theorem 2, we show that if we cut the

ellipsoid only along directions in which it is not very
skinny yet (i.e., we explore only if the gap b̄t − bt is
large) sufficiently many times, then the ellipsoid will
eventually become small in every direction. Conse-
quently, we will not need to explore from that point
onward. To do so, instead of bounding the volume of
the ellipsoid, we need to bound the eigenvalues of the
matrix defining the ellipsoid.
We will make the statements in the previous par-

agraph precise in a moment. Before that, we provide

Figure 2. (Color online) The Polytope K1 and Its Löwner-John Ellipsoid E1

Figure 3. (Color online) The Vector x1 � (1/ ̅̅
2

√
, 1/

̅̅
2

√ ) Induces an Exploit Price p1
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the reader with a quick introduction to the theory
of ellipsoids. We refer the reader to the book by
Grötschel, Lovász, and Schrijver (Grötschel et al.
1993) or the survey by Bland, Goldfarb, and Todd
(Bland et al. 1981) for an in-depth discussion.

5.1. A Primer on Ellipsoids
We invite readers who are familiar with the ellipsoid
method to skip this subsection and move directly to
Section 5.2. A d × d matrix A is symmetric if A � A′,
that is, it is equal to its transposed matrix. It is a basic
fact of linear algebra that every symmetric matrix A
admits an eigenvalue decomposition, that is, we can
write A � QΛQ′, where Q is a d × d orthogonal matrix
(i.e., Q′Q � I) and Λ is a diagonal matrix with ele-
ments λ1 ≥ λ2 ≥ . . . ≥ λd in its main diagonal and zero
elsewhere. We refer to λi(A) as the ith largest eigen-
value of A. A symmetric matrix is said to be positive
definite if all of its eigenvalues are strictly positive, that
is, λd(A) > 0.

An ellipsoid E is a subset of Rd defined by a vector
a ∈ Rd, whichwe call the center, and a positive definite
matrix A as follows:

E(A, a) :� {θ ∈ Rd : (θ − a)′A−1(θ − a) ≤ 1}.

Each of the d radii of E(A, a) corresponds to the square
root of an eigenvalue of A and the volume of the el-
lipsoid is given by

VolE(A, a) � Vd ·
̅̅̅̅̅̅̅̅̅̅̅̅∏

i λi(A)
√

,

where Vd is a constant that depends only on d and cor-
responds to the volume of the unit ball inRd. Since the
volume depends on the matrixA and not on a, we will
often write VolE(A) instead of VolE(A, a) when the
center is not important or can be inferred from the context.
For any vector x ∈ Rd \ {0}, argmaxθ∈E(A,a) x′θ � a + b

and argminθ∈E(A,a) x′θ � a − b for b � Ax/
̅̅̅̅̅̅̅
x′Ax

√
(see

Grötschel et al. 1993). Furthermore, the hyperplane
perpendicular to x passing through a is given by
x′(θ − a) � 0. This plane cuts the ellipsoid E(A, a) in
two symmetric pieces. The smallest ellipsoid con-
taining each of these pieces (called the Löwner-John
ellipsoid) can be computed by the following closed-
form formula. The smallest ellipsoid containing
E(A, a) ∩ {θ ∈ Rd : x′(θ − a) ≤ 0} is E(Ã, a − 1

d+1 b) and
the smallest ellipsoid containing E(A, a) ∩ {θ ∈ Rd :
x′(θ − a) ≥ 0} is E(Ã, a + 1

d+1 b), where

Ã � d2

d2 − 1
A − 2

d + 1
bb′

( )
. (4)

Figure 5. (Color online) Updating the Uncertainty Set and Computing the Löwner-John Ellipsoid E2

Figure 4. (Color online) The Vector x1 � (1/ ̅̅
2

√
, 1/

̅̅
2

√ ) Induces an Explore Price p1
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A central fact used in the analysis of the ellipsoid
method is the following:

VolE(Ã) ≤ e−1/2d · VolE(A).
One can note that, while the volume (and hence the
product of eigenvalues) decreases after an update,
some eigenvalues might increase, whereas other ei-
genvalues decrease. To see this, consider for example
the ellipsoid where A � I (here I denotes the identity
matrix), and assume x1 � e1 � (1, 0, . . . , 0), that is, the
coordinate vector in the 1-direction.Using Equation (4),
we obtain that Ã is the diagonal matrix with eigen-
value d2

(d+1)2 < 1 in direction e1, and d2
d2−1 in all other

directions. In general, the ellipsoid shrinks in the di-
rection of x1 but expands in directions orthogonal to x1
(see Figure 6 for an illustration). For example, if one
starts with a unit ball, successively cut the ellipsoid
along the e1-direction and replace one of the halves
by its Löwner-John ellipsoid, then one direction
shrinks exponentially while the other directions grow
exponentially.

5.2. Revisiting EllipsoidPricing
Before analyzing the regret of the ELLIPSOIDPRICING

algorithm, we revisit it using the tools introduced in
Section 5.1. We can represent the ellipsoid at time t
by Et � E(At, at). Furthermore, computing bt and b̄t can
be done in closed form:

bt � min
θ̂∈Et

x′tθ̂ � x′t at − Atxt̅̅̅̅̅̅̅̅
x′tAtxt

√[ ]
� x′tat −

̅̅̅̅̅̅̅̅
x′tAtxt

√
.

Similarly, b̄t � x′tat +
̅̅̅̅̅̅̅̅
x′tAtxt

√
, which means that the

gap b̄t − bt � 2
̅̅̅̅̅̅̅̅
x′tAtxt

√
. First, note that deciding be-

tween exploration and exploitation as well as setting
the appropriate price can be accomplished by com-
puting amatrix-vector product instead of solving two
linear programs (as was the case for POLYTOPEPRICING).

Second, updating the ellipsoid can be done via
Equation (4). The algorithm only needs to keep track
of a d × d matrix and a d-dimensional vector. Unlike
POLYTOPEPRICING, the amount of information that the
algorithm needs to maintain does not depend on T.

5.3. Regret Analysis for EllipsoidPricing
To show that the regret of EllipsoidPricing is small,
we prove that if ε is set properly, then the number
of exploration rounds is bounded. To be precise, we
have the following result.

Lemma 1. The EllipsoidPricing algorithm will choose the
explore price in at most 2d2 ln(20R(d + 1)/ε) time periods.

We defer the proof of this lemma to Section 5.5. It is
simple to see how Lemma 1 can be used to prove our
main result by setting the parameter ε appropriately.

Proof of Theorem 2. In an exploitation round, since we
collect revenue bt and the best possible revenue from
that round is b̄t, the regret from that round is at most
b̄t − bt ≤ ε. For exploration rounds, we use the trivial
bound of regret R per round. So, if we have at most
N exploration rounds, Regret ≤ NR + (T −N)ε. By
Lemma 1we haveRegret ≤ 2Rd2 ln(20R(d + 1)/ε) + Tε.
By choosing ε � Rd2/T, the total regret becomes
Regret � O(Rd2 ln(T/d)). □

The core of our analysis consists of proving Lemma 1.
Recall that the algorithm explores if and only if
b̄t − bt � 2

̅̅̅̅̅̅̅̅
x′tAtxt

√
> ε. If the matrix At is such that

max{x∈Rd: ||x||≤1} 2
̅̅̅̅̅̅̅̅
x′Atx

√ ≤ ε, then all the feature vec-
tors will lead the algorithm to exploit. We note that
the quantity max{x∈Rd: ||x||≤1} x′Atx corresponds to the
largest eigenvalue λ1(At) of the matrix At. Our goal,
then, is to show that, after 2d2 ln(20R(d + 1)/ε) ex-
ploration steps, all the eigenvalues of At are at most
ε2/4, so that max{x∈Rd: ||x||≤1} 2

̅̅̅̅̅̅̅̅
x′Atx

√ ≤ ε.
The proof of this claimwill crucially rely on the fact

that we only perform exploration steps if
̅̅̅̅̅̅̅̅
x′tAtxt

√
is

Figure 6. (Color online) After an Explore Step Where x1 � (1, 0), the New Ellipsoid E2 Shrinks Along the θ1-Axis but Expands
Along the θ2-Axis
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sufficiently large for the feature vector xt. If instead
we were to explore in every round, then even though
the volume is shrinking by the usual ellipsoid argu-
ment, the largest eigenvaluemay not shrink, as shown
in the example at the end of Section 5.1.

Conceptually, we would like to show that, after
sufficiently many exploration steps, the largest ei-
genvalue cannot be too large.We prove this result in a
roundaboutway.We first construct a lower bound for
the smallest eigenvalue. Such a bound automatically
implies a lower bound on the volume of the ellipsoid.
Since at each exploration step the volume decreases
by a constant factor, we also have an upper bound on
the volume of the ellipsoid after a given number of
exploration steps. Combining these two results, we
obtain an upper bound on the number of exploration
steps, which allows us to prove that EllipsoidPricing
is a low-regret algorithm.

5.4. More Tools from Linear Algebra
To study how the eigenvalues of At change when we
explore, we introduce some tools from linear algebra
to bound the variation in eigenvalues, when a matrix
is perturbed by a rank-one matrix.

Given a symmetric d × dmatrix A, its characteristic
polynomial is defined as ϕA(z) � det(A − zI), which is
a polynomial of degree d with the eigenvalues of A
as roots.

Given a vector b ∈ Rd and β > 0, consider the rank-
one perturbation D � A − βbb′. If λ1 ≥ λ2 ≥ . . . ≥ λd
are the eigenvalues ofA,Wilkinson (1965) showed that
the characteristic polynomial of D can be written as:

ϕD(z) � det(A − βbb� − zI)
� ∏

j
(λj − z) − β

∑
i
b2i

∏
j ��i

(λj − z).

It is often convenient to write, for z �� λi for all i, the
characteristic polynomial as:

ϕD(z) �
∏
j
(λj − z) · ϕ̂D(z) where

ϕ̂D(z) � 1 − β
∑
i

b2i
λi − z

. (5)

We refer to Golub (1973) for an in-depth discussion of
this result. An important consequence is the fact that,
evaluating the characteristic polynomial ϕD(z) at λi,
we obtain: ϕD(λd) ≤ 0, ϕD(λd−1) ≥ 0, ϕD(λd−2) ≤ 0, and
so on. Then, the intermediate value theorem allows us
to pin down the exact intervals in which the eigen-
values of D lie. Let σ1 ≥ σ2 ≥ . . . ≥ σd be the eigen-
values of D. Then

λd − βb′b ≤ σd ≤ λd ≤ σd−1 ≤ λd−1 ≤ σd−2
≤ λd−2 ≤ . . . ≤ λ2 ≤ σ1 ≤ λ1. (6)

Consequently, this provides us with a tool to lower
bound the smallest eigenvalue ofD, as we show in the
next lemma.

Lemma 2. Let λ1 ≥ . . . ≥ λd be the eigenvalues of A, and let
σ1 ≥ . . . ≥ σd be the eigenvalues of D � A − βbb′. Consider
any z < λd. If ϕD(z) ≥ 0, then σd ≥ z.

Proof. For any z < λd, the sign of ϕD(z) is the same as
the sign of ϕ̂D(z), since in Equation (5), we have∏

j(λj − z) > 0. Thus, ϕD(z) ≥ 0 implies ϕ̂D(z) ≥ 0. Note
that ϕ̂D(·) is a nonincreasing function since ∂ϕ̂D(z)

∂z �−β∑i
b2i

(λi−z)2 ≤ 0.We also have that ϕ̂D(σd) � 0 by the definition
of the characteristic polynomial. Therefore, ϕ̂D(z) ≥ 0
implies σd ≥ z. □

5.5. Back to the Regret Analysis
As discussed at the end of Section 5.3, our proof
strategy is to lower bound the smallest eigenvalue of
At and then to use the traditional ellipsoid method
argument that upper bounds the volume of the el-
lipsoid. The two bounds combined can then be used to
upper bound the number of exploration steps. First,
we use Lemma 2 to show that the smallest eigenvalue
does not decrease by much in any given iteration.

Lemma 3. For any exploration step t, we have λd(At+1) ≥
d2

(d+1)2 λd(At).

Proof. From the update rule in Equation (4), we can
write At+1 � d2

d2−1D for D � At − 2
d+1 bb

′, where b � Atxt/̅̅̅̅̅̅̅̅
x′tAtxt

√
. For convenience, we move to the base of ei-

genvalues of At, which we do by writing At � QΛQ′.
We define Ãt+1 � Q′At+1Q and D̃ � Q′DQ. We thus
obtain Ãt+1 � d2

d2−1D̃ and D̃�Λ− 2
d+1 b̃b̃

′, where b̃ � Q′b �
Λc/

̅̅̅̅̅̅
c′Λc

√
and c � Q′xt.

Since the eigenvalues are invariant by changes of bases,
λd(At+1) � λd(Ãt+1). We know that λd(Ãt+1) � d2

d2−1λd(D̃),
soweonly need to prove thatλd(D̃) ≥ d2−1

d2 · d2
(d+1)2 λd(At) �

d−1
d+1λd(At).
To simplify notation, we refer to λd(At) as simply λd

from now on. Using Lemma 2, we only need to argue
that ϕ̂D̃(d−1d+1λd) ≥ 0. We have

ϕ̂D̃
d − 1
d + 1

λd

( )
� 1 − 2

d + 1

∑
i

b̃2i

λi − d − 1
d + 1

λd

≥ 0.

Using the fact that b̃i � λici/
̅̅̅̅̅̅̅̅̅∑

j λjc2j
√

, one can rewrite
the expression as follows:

1 − 2
d + 1

∑
i

λic2i∑
j λjc2j

1

1 − d − 1
d + 1

λd

λi

≥ 1 − 2
d + 1

max
i

1

1−d − 1
d + 1

λd

λi

� 1 − 2
d + 1

1

1−d − 1
d + 1

λd

λd

� 0.
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The inequality follows from the fact that the term
λic2i∑
j λjc2j

depicts a convex combination and can be

bounded by its maximal element. The equality fol-
lows from λd being the smallest eigenvalue. □

Lemma 3. shows that the smallest eigenvalue of At
decreases in each time step by at most d2/(d + 1)2. The
intuition for this result is as follows. At the end of Sec-
tion 5.1, we argued that,when thematrixAt corresponds
to the unit sphere and x1 � e1, the new matrix At+1 will
have d2/(d + 1)2 as its smallest eigenvalue, which will
correspond to direction e1. The same statement is true in
general. Assume xt is the eigenvector that corresponds to
the smallest eigenvalue of an arbitrary matrix At. Then,
the smallest eigenvalue of At+1 is equal to d2

(d+1)2 λd(At).
Lemma 3 proves that this particular xt is the one that
causes the smallest eigenvalue to shrink the most.

In the next lemma, we show that this eigenvalue
cannot decrease past a certain point. More precisely,
we show that there exists a constant k(d) such that,
once the smallest eigenvalue is below k(d)ε2, either
(i) x′tAtxt ≤ 1

4 ε
2, resulting in an exploit step, or

(ii) λd(At+1) ≥ λd(At), that is, the smallest eigenvalue
does not decrease.

Lemma 4. There exists a sufficiently small k � k(d) such
that if λd(At) ≤ kε2 and x′tAtxt > 1

4 ε
2, then λd(At+1) ≥

λd(At), that is, the smallest eigenvalue does not decrease after
the update. In addition, one can take k � 1

400d2.

Proof. In this proof, we assume d ≥ 2. Note that the
lemma trivially holds for d � 1. Using the same nota-
tion as in the proof of Lemma 3, we need to show that
λd(At+1) � d2

d2−1 σd ≥ λd(At), where σd is the smallest ei-
genvalue of D̃. To prove that σd ≥ d2−1

d2 λd(At), it is suf-
ficient to show that ϕD̃(d2−1d2 λd) ≥ 0 by using Lemma 2.
Note thatϕD̃(d2−1d2 λd) ≥ 0 holds if and only if ϕ̂D̃(d2−1d2 λd) ≥
0 since d2−1

d2 λd < λd. Therefore, the remainder of the
proof focuses on showing that ϕ̂D̃(d2−1d2 λd) ≥ 0.

We next split the sum in the definition of ϕ̂D into two
parts, depending onwhether the eigenvalueλi is smaller
or larger relative to

̅̅
k

√
ε2. We obtain

ϕ̂D̃
d2 − 1
d2

λd

( )
� 1 − 2

d + 1

∑
i:λi≤ k̅

√
ε2

λic2i∑
j λjc2j

1

1 − d2 − 1
d2

λd

λi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+ ∑

i:λi> k̅
√

ε2

λic2i∑
j λjc2j

1

1 − d2 − 1
d2

λd

λi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

To bound the previous expression, we use some
bounds on the eigenvalues. For the first sum, we
know that λi ≤

̅̅
k

√
ε2,

∑
j λjc2j >

1
4 ε

2, and λi ≥ λd. For the

second sum,we use λi ≥
̅̅
k

√
ε2 � kε2

k̅
√ ≥ λd̅

k
√ . Therefore, we

obtain

ϕ̂D̃
d2 − 1
d2

λd

( )
≥ 1 − 2

d+1
∑

i:λi≤ k̅
√

ε2

̅̅
k

√
ε2c2i

1
4 ε

2

1

1−d
2 − 1
d2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+ ∑

i:λi> k̅
√

ε2

λic2i∑
j λjc2j

1

1 − d2 − 1
d2

̅̅
k

√
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 1 − 2
d + 1

4d2
̅̅
k

√ + 1

1 − d2 − 1
d2

̅̅
k

√
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
The last inequality follows from the facts that

∑
i c2i ≤ 1

and
∑

i
λic2i∑
j λjc2j

� 1. In the limit when k → 0, the above
expression approaches 1 − 2

d+1 and, hence, is positive.
Consequently, there exists a sufficiently small k � k(d)
such that ϕ̂D(d2−1d2 λ1) ≥ 0. This concludes the proof of
existence. By substituting k � 1/400d2 in the final
bound of ϕ̂D̃(d2−1d2 λd) and inspecting the first few values
of d and the derivative, we conclude that taking k �
1/400d2 is enough. □

The intuition behind Lemma 4 is as follows. Assume
λd is sufficiently small (λd ≤ kε2). If xt is equal to the
eigenvector that corresponds to the smallest eigenvalue,
the algorithm will choose to exploit (thus preserving the
ellipsoid). If xt is not far from this eigenvector, the al-
gorithm still chooses an exploit price. More generally,
any xt that is approximately a convex combination of
eigenvectors associated with small eigenvalues (where
small meansλi ≤

̅̅
k

√
ε2) will induce an exploit step. For

the algorithm to choose an explore step, the vector
xt has to be approximately a convex combination
of eigenvectors that correspond to large eigenvalues
(where large means λi >

̅̅
k

√
ε2). However, such an xt

cannot cause the smallest eigenvalue to shrink, as this
xt will be nearly orthogonal to the eigenvectors cor-
responding to the smallest eigenvalues (see Figure 6
for a 2-dimensional illustration).
Finally, we are in the position of proving Lemma 1,

which is the missing piece of our argument.

Proof of Lemma 1. Let Ẽ1 � E1, and let Ẽn be the el-
lipsoid obtained after the nth explore step. Let Ãn be the
matrix defining Ẽn. We will build two bounds on
the volume ratio Vol Ẽn+1/Vol Ẽ1. The first bound is
the usual upper bound from the ellipsoid method (see
Section 5.1) given by

Vol Ẽn+1
Vol Ẽ1

≤ e−
n
2d.

Next, we construct a lower bound by using the pre-
vious lemmas. Since Ẽ1 lies in the ball of radius R,
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we know that Vol Ẽ1 ≤ Vd · Rd, for a constant Vd de-
fined in Section 5.1. For Ẽn+1, we can use

Vol Ẽn+1 � Vd ·
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∏
i
λi(Ãn+1)

√
≥ Vd · λd(Ãn+1)d/2.

FromLemma 4,when the smallest eigenvalue is below
ε2/400d2, it cannot shrink further. Also, from Lemma 3,
whenever the smallest eigenvalue shrinks, it has to shrink
by at most d2/(d + 1)2, and hence, at any given time

λd(Ãn+1) ≥ d2

(d + 1)2 ·
ε2

400d2
� ε2

400(d + 1)2 .

Therefore, we have

Vol Ẽn+1 ≥ Vd · ε

20(d + 1)
( )d

.

The ratio of those two expressions gives us a bound
on the volume decrease. Putting the two bounds to-
gether, we obtain

ε

20R(d + 1)
( )d

≤ Vol Ẽn+1
Vol Ẽ1

≤ e−
n
2d,

which implies that the number of explore steps sat-
isfies n ≤ 2d2 ln(20R(d+1)ε ). □

6. Noisy Valuations
Up until now, we have assumed that themarket value
of product t is determined according to a linearmodel,
that is, vt � θ′xt. In this section, we extend the model
to allow for idiosyncratic additive noise vt � θ′xt + δt,
where δt is an i.i.d. zero-mean random variable rep-
resenting an error in our estimate of vt.

In this noisy model, the original regret definition,
Regret�∑T

t�1 vt−ptI{vt ≥ pt}, becomes overly demand-
ing and no algorithm (even in the one-dimensional
context-free case) can achieve sublinear regret. The
natural approach is to compare against a benchmark
that knows the value of θ but not the realization of
δt. Therefore, we can redefine the regret as

Regret �E
∑T
t�1

max
p∗t

p∗t · Pr
δt
(θ′xt + δt ≥ p∗t)

( )[
− pt · I{vt ≥ pt}

]
,

where the expectation is taken over both the noise
and any randomness used by the algorithm.

Assumption. Throughout this section, we assume that
the distribution of the noise δt is fixed over time, known,
and σ-sub-Gaussian, which are common assumptions
for tractability. With this assumption, we can focus on
learning the weights for each feature instead of learning
the noise distribution itself. We say that a distribution is
σ-sub-Gaussian if Pr(|δt| > t) ≤ e−t2/(2σ2) for all t > 0.6

Before analyzing the contextual case, it is instruc-
tive to start with the one-dimensional version of our
problem, where the valuation is simply vt � v + δt for
a fixed v ∈ R+. Kleinberg and Leighton (2003) proved
that no learning algorithm can obtain o( ̅

T̅
√ ) regret and

also show a matching upper bound of O( ̅
T̅

√ ) under
certain assumptions on the distribution of δt. Given
this lower bound, we will generally aim for sublinear,
but not logarithmic, regret in the noisy contextual case.
Returning to our setting, we will show that the

ellipsoid technique is useful in designing feature-
based pricing algorithms with noisy valuations. In
particular, we will construct two algorithms, SHAL-

LOWPRICING and ELLIPSOIDEXP4. SHALLOWPRICING is a
robust version of ELLIPSOIDPRICING that will allow us
to be robust to low noise (σ � O(1/T lnT)) without
performance degradation. ELLIPSOIDEXP4 is a combi-
nation of SHALLOWPRICING and EXP4, a standard con-
textual bandit algorithm from the literature. We will
prove a regret bound of O(d5/2 ln(T/d) · [1 + T2/3d2/3 ·
(σ ln(T))1/3 ̅̅̅̅̅̅̅̅̅̅̅

ln(T/σ)√ ]) for ELLIPSOIDEXP4. This regret
bound is logarithmic in T when the noise vanishes
(i.e., σ → 0), and it has approximately the same de-
pendence in T as EXP4, that is, Õ(T2/3) for high-noise
settings (σ � O(1)). In addition, under moderate noise
such as σ � O(1/ ̅

T̅
√ ) or σ � O(T−2/3), we incur Õ( ̅

T̅
√ )

or Õ(T4/9) regret, respectively, that is, lower than
EXP4. The ELLIPSOIDEXP4 algorithm uses SHALLOW-

PRICING to localize the solution to a narrow region and
then applies EXP4 on the localized region. The per-
formance boost comes from the fact that the regret
of EXP4 depends heavily on the number of possible
actions the learner can choose from. By first localizing
the solution to a narrow region using the ellipsoid
method, we can run the algorithm with a smaller set
of actions and, hence, improve the regret.
Though we explicitly combine SHALLOWPRICING with

EXP4 to obtain a regret bound, our approach is ge-
neric in the sense that we could replace EXP4 with
other contextual bandit algorithms. For example, if
the features are i.i.d. over time, we could use a sto-
chastic gradient descent algorithm as in Amin et al.
(2014) instead of EXP4 and obtain a similar re-
gret bound.
Our approach will be as follows. In Section 6.1, we

introduce SHALLOWPRICING, prove that it does not incur
too many explore steps, and show a regret bound for
low-noise environments. In Section 6.2, we analyze
the EXP4 algorithmand showhow to obtain Õ(d1/3T2/3)
regret under either a noiseless or noisy regime. We
then combine the two algorithms to produce ELLIP-

SOIDEXP4 and prove its regret bound in Section 6.3.

6.1. A Robust Version of ELLIPSOIDPRICING

We now propose a version of ELLIPSOIDPRICING that
is designed to offer some protection against noise.
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Recall that δt is assumed to be σ-sub-Gaussian. We
define

δ � ̅̅
2

√
σ lnT. (7)

Then, Pr(|δt| > δ) ≤ e− ln2 T. Using the union bound, we
canwrite Pr(|δt| > δ for some t � 1, . . . ,T) ≤ Te− ln2 T and

Pr(|δt| ≤ δ for all t � 1, . . . ,T) ≥ 1 − Te− ln2 T ≥ 1 − 1/T,

(8)
where the last inequality holds for T ≥ 8. That is, with
probability at least 1 − 1/T all the noise terms δt are
bounded by δ in absolute value. Therefore, if we use a
buffer of size δ when adding cuts to the ellipsoid, we
areunlikely to remove the trueθ fromtheuncertainty set.

Wewill add a buffer in the followingway.Whenwe
choose a price pt and observe a sale, we can no longer
infer that θ′vt ≥ pt. Instead, we will infer that θ′vt ≥
pt − δ. Similarly, in the event of a no sale, all that we
will infer isθ′vt ≤ pt + δ.Wewill call the version of our
algorithm that adds these buffers SHALLOWPRICING.

SHALLOWPRICING will keep uncertainty sets Kt in the
form of ellipsoids, and for each vector xt, it will
compute bt and bt in the same way as ELLIPSOIDPRICING.
For a given parameter ε ≥ 4dδ, if bt − bt ≥ ε, the al-
gorithm will suggest the price pt � 1

2 (bt + bt). If bt −
bt ≥ ε and a sale occurs, we remove elements from the
uncertainty set as if we had used the price pt − δ, that
is, Kt+1 � Kt ∩ {θ ∈ Rd : θ′xt ≥ pt − δ}. Similarly, when
a sale does not occur, we remove elements from the
set as if we had used the price pt + δ, that is, Kt+1 �
Kt ∩ {θ ∈ Rd : θ′xt ≤ pt + δ}. If bt − bt < ε, we do not
update the uncertainty set. SHALLOWPRICING also re-
duces the exploit prices from ELLIPSOIDPRICING by δ,
using pt � bt − δ. The cuts we used in Section 5 remove
half of the volume of the ellipsoid and are called
central cuts. The cuts we propose here remove less
than half of the volume of the ellipsoid and are called
shallow cuts. Figure 7 illustrates the difference be-
tween central and shallow cuts.

To analyze SHALLOWPRICING, we need to introduce
the concept of the depth of a cut, which is given by

αt � − δ̅̅̅̅̅̅̅̅
x′tAtxt

√ .

The depth of a cut is a number between −1 and 0,
where −1 represents a supporting hyperplane of the
ellipsoid and 0 represents a central cut of the ellipsoid.
Our analysis does not involve the third type of stan-
dard cuts, the deep cut, which is a cut that removes
more than half of the volume of the ellipsoid and, thus,
has positive depth.

For SHALLOWPRICING to work, the depth of the cuts
has to be at least −1/d. With αt ≥ −1/d, the following
machinery allows us to compute the Löwner-John
ellipsoids of the sets that remain after shallow cuts

(see equation (3.1.17) in Grötschel et al. 1993). The
Löwner-John ellipsoid of the set Kt+1 �E(At,at)∩{θ∈
Rd :θ′xt ≥ (bt+bt)/2−δ} is given by E(At+1, at + 1+dαt

d+1 bt),
where bt � Atxt/

̅̅̅̅̅̅̅̅
x′tAtxt

√
and

At+1 � d2

d2 − 1
1 − α2

t

( )
At − 2(1 + dαt)

(d + 1)(1 + αt) btb
′
t

( )
. (9)

Similarly, the Löwner-John ellipsoid of the set Kt+1 �
E(At, at) ∩ {θ ∈ Rd : θ′xt ≤ (bt + bt)/2 + δ} is given by
E(At+1, at − 1+dαt

d+1 bt).
Note that Equation (9) is not all that different from

Equation (4). We can therefore adapt our analysis for
central cuts to allow for shallow cuts. We are now ready
to present a bound of the number of explore steps used
by SHALLOWPRICING. Recall from Equation (8) that, with
probability at least 1 − 1/T, all the noise terms δt are
bounded by δ.

Theorem 3. If δt ≤ δ for all t, then the SHALLOWPRICING

algorithm with parameter ε � max{Rd2/T, 4dδ} will ob-
serve bt − bt > ε in at most O(d2 ln(min{T/d,R/δ})) steps.
Proof. The proof of this result closely mimics the proof
of Theorem 2. Therefore, instead of repeating all the
steps in the proof of Theorem 2 and its intermediary
lemmas, we restrict ourselves to pointing out the nec-
essary changes.
LetN be the number of steps with bt − bt > ε. We call

such a step an exploration step. To bound this quantity,
we first need to show that Lemmas 3 and 4 still apply in
the noisy setting. We next show that, for any explo-
ration step t,

λd(At+1) ≥ d2(1 − αt)2
(d + 1)2 λd(At), (10)

Figure 7. (Color online) If We Remove the Half-Ellipsoid
Below p1, We Are Performing a Central Cut of the Ellipsoid
E1; If We Remove Only the Subset Below p1 − δ, We Are
Performing a Shallow Cut of E1
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which is a shallow-cut equivalent of Lemma 3. We
define the matrix D � At − 2(1+dαt)

(d+1)(1+αt) btb
′
t so that At+1 �

d2
d2−1 (1 − α2

t )D according to Equation (9). We then per-
form the same change of basis as in the proof of
Lemma 3 to define D̃. Equation (10) is equivalent to
d2

d2−1 (1 − α2
t )λd(D̃) ≥ d2(1−αt)2

(d+1)2 λd(At), which is itself equiv-

alent to showing that

λd(D̃) ≥ (1 − αt)(d − 1)
(1 + αt)(d + 1)λd(At).

Using Lemma 2, we can prove the statement above
by showing that

ϕ̂D̃
(1 − αt)(d − 1)
(1 + αt)(d + 1)λd(At)
( )

� 1 − 2(1 + dαt)
(d + 1)(1 + αt)

∑
i

b̃2i
λi(At) − (1−αt)(d−1)

(1+αt)(d+1)λd(At)
≥ 0,

where b̃i is as defined in the proof of Lemma 3. The
lowest possible value of the right-hand side of the
equation above occurs when b̃2d � λd(At) and b̃2i � 0 for
i �� d. Thus,

ϕ̂D̃
(1 − αt)(d − 1)
(1 + αt)(d + 1)λd(At)
( )
≥ 1 − 2(1 + dαt)

(d + 1)(1 + αt)
1

1 − (1−αt)(d−1)
(1+αt)(d+1)

� 0,

proving Equation (10). This equation immediately
implies the weaker statement λd(At+1) ≥ d2

(d+1)2 λd(At)
since αt ≤ 0.

We next prove a shallow-cut equivalent of Lemma 4.
We argue that, for a sufficiently small k � k(d), if
λd(At) ≤ kε2 and x′tAtxt > 1

4 ε
2, λd(At+1) ≥ λd(At). As in

Lemma 4, one can take k � 1
400d2. To show this result, it

is sufficient to prove that

ϕ̂D̃
(d2 − 1)

d2(1 − α2
t )
λd(At)

( )
≥ 0.

We can mimic the proof of Lemma 4 to obtain

ϕ̂D̃
(d2 − 1)

d2(1 − α2
t )
λd(At)

( )

≥ 1 − 2(1 + dαt)
(1 + d)(1 + αt)

4
̅̅
k

√
1 − d2−1

d2(1−α2
t )
+ 1

1 − d2−1
d2(1−α2

t )
̅̅
k

√
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(11)

Since we assumed that ε ≥ 4dδ and we know that̅̅̅̅̅̅̅̅
x′tAtxt

√ ≥ 1
2 ε, by the definition of αt we have αt �

−δ/ ̅̅̅̅̅̅̅̅
x′tAtxt

√ ≥ −2δ/ε ≥ −1/2d. Since αt ∈ [−1/2d, 0], the
quantity inside the square brackets in Equation (11)
converges to 1 when k goes to infinity. The limit as
k goes to infinity of the right-hand side of the

inequality above is therefore 1 − 2(1+dαt)
(1+d)(1+αt), which is

strictly positivewhen d > 1. (As in the proof of Lemma 4,
we ignore the trivial case of d � 1.) We thus reach our
desired result.
We have now proved that Lemmas 3 and 4 still apply

in the noisy setting. We are thus ready to prove our
theorem. Just as in Theorem 2, our core argument is that
the volume of the ellipsoid decreases exponentially fast
in the number of explore steps and that Lemmas 3 and 4
together provide a bound on the smallest possible
volume of the ellipsoid. If we use an explore price at
step t, the following volume decrease bound applies
under a shallow cut:

VolEt+1
VolEt

≤ e−
(1+dαt)2

5d ,

as shown in equation (3.3.21) of Grötschel et al. (1993).
Since αt ≥ −1/2d,

VolEt+1
VolEt

≤ e−
1

20d.

We can therefore repeat the proof of Lemma 1, with
the sole difference being that we replace e−n/2d by
e−n/20d. We then obtain a bound on the number of
explore steps N:

N ≤ 20d2 ln
20R(d + 1)

ε

( )
.

By using ε � max{Rd2/T, 4dδ}, we obtain N �
O(d2 ln(min{T/d,R/δ})). □

The result of Theorem 3 immediately implies that,
for σ � O(1/T lnT), the regret of SHALLOWPRICING is
O(Rd2 ln(T/d)). That is, under low noise, we recover
the same regret bound as in the noiseless regime
(Theorem 2).

Corollary 1. Suppose σ � O( Rd
T lnT). Then, the worst-case

regret of the SHALLOWPRICING algorithm with parameter ε �
Rd2/T is O(Rd2 ln(T/d)).
Proof. Let δ be asdefined inEquation (7). ByEquation (8),
there is at most probability 1/T that |δt| > δ for some t.
Therefore, the regret incurred by potentially removing
θ from the uncertainty set is at most RT/T � R. The
regret incurred by the explore steps is R times the
number of explore steps as given by Theorem 3,
which is equal to O(Rd2 ln(T/d)) by the right choice
of δ. The regret incurred by exploit steps is at most
T(ε + δ) since ε + δ is the maximum loss from a sale
per round. By the choices of ε and δ, this regret term
is also bounded by O(Rd2 ln(T/d)), completing the
proof. □

However, under a high-noise setting (e.g., σ � O(1)),
the performance of SHALLOWPRICING deteriorates. In
particular, adding a buffer to all exploit prices becomes
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too costly. To address this issue, one needs to adapt the
algorithm to allow some learning to take place also
during the exploitation periods.With this motivation in
mind, we will show how to combine SHALLOWPRICING

with EXP4 to achieve a better regret bound in a high-
noise setting. Before doing so, we turn our attention to
EXP4 and show how to apply it to our feature-based
pricing problem.

6.2. Applying EXP4 to Our Feature-Based
Pricing Problem

We now focus on EXP4 of Auer et al. (2002), the oldest
and best-known algorithm for adversarial contextual
bandits. While the ideas we use originate from Auer
et al. (2002), we will present them using the modern
language from section 4.2.1 of the survey by Bubeck
and Cesa-Bianchi (2012). EXP4 is a regret-optimal
general-purpose bandit algorithm, but one that is com-
putationally inefficient. In this subsection, we will in-
stantiate EXP4 to our problem and study its regret
performance. In Section 6.3, we will propose an algo-
rithm that combines our ellipsoid technique with EXP4.

The generic setup of EXP4 comprises a space - of
contexts, a space ! of actions, and a set Π of policies.
Each policy π ∈ Π is a mapping π : - → !. In each
step t, the adversary chooses a context xt ∈ - and a
function rt(·) mapping actions a ∈ ! to rewards. The
learner observes the context xt but not the function
rt(·). The learner chooses an action at and obtains the
reward rt(at). The regret is defined as

Regret � E max
π∈Π

∑
t
rt(π(xt)) −

∑
t
rt(at)

[ ]
,

where the expectation is taken over the choice of at
by the algorithm.

The EXP4 algorithm maintains weights wt(π) for
each policy π ∈ Π, which are initialized as w1(π) � 1
for all policies. For each t, a policy π is drawn with
probability proportional to wt(π), and the algorithm
chooses according to the recommendation at � π(xt)
given by this policy and then observes the reward
rt(at) for the chosen action. Subsequently, the algo-
rithm comes up with the following unbiased esti-
mator of the function rt(·) for each policy:

r̃t(π) � rt(at) ·
∑

π∈Π w(π)∑
π:π(xt)�at w(π)

if π(xt) � at;

0 otherwise,

{
and uses r̃t(π) to update the weights according to

wt+1(π) � wt(π) · exp(η · r̃t(π)),
for a given fixed parameter η > 0. The total regret
guarantee is given by

Regret ≤ ln(Π| |)
η

+ η

2

∑
t

{π(xt) : π ∈ Π}| |. (12)

The regret bound in Equation (12) is drawn from the
last equation in the proof of theorem 4.2 in the sur-
vey by Bubeck and Cesa-Bianchi (2012) (the original
source of this result is Auer et al. 2002). There are two
minor differences between Equation (12) and the one
in Bubeck and Cesa-Bianchi’s work. First, our pa-
rameter η is a constant, whereas they allow it to change
over time. Second, we replaced the total number of
available actions with the number of actions that may
be selected by any policy, that is, |{π(xt) : π ∈ Π}|.
Since {π(xt) : π ∈ Π} ⊆ !, the last term is bounded

by !| |, leading to the overall bound of
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2T!| | ln(Π| |)√

given the appropriate choice of η. We refer to the
excellent survey in Bubeck and Cesa-Bianchi (2012)
for a modern version of the regret analysis of EXP4.

6.2.1. Instantiating EXP4 for the Noiseless Regime. We
start by instantiating EXP4 for the noiseless case
(δt � 0 for all t) of the dynamic pricing problem. Both
the action and context spaces are continuous in our
original feature-based pricing problem. Thus, to get a
reasonable guarantee, wewill need to discretize them
by balancing the error induced by the discretization
and the size of the discretized action and context
spaces.
For a fixed discretization parameter γ ≥ 0, we de-

fine the discretization operator �·�γ as follows. For any
real number y ∈ R, we let

�y�γ � γ · �y/γ�.
For a vector y ∈ Rd, we define �y�γ as the Rd vector
obtained by applying �·�γ to each component, that is,
(�y�γ)i � �yi�γ. Finally, for a set K ⊆ Rd, we define
�K�γ � {�y�γ : y ∈ K}.
Having defined the discretization operator, we are

now ready to instantiate EXP4. For the remainder of
this section, we assume K1 � [0, 1]d to keep the dis-
cretization arguments clean. We associate a policy
with each vector θ ∈ �[0, 1]d�γ such that there are Π| | �
O(1/γd) policies. For every vector θ ∈ �[0, 1]d�γ, let
policy πθ associate xt with the price

πθ(xt) � �θ′xt�γ ̅̅
d

√ − γ
̅̅
d

√
.

This discretization ensures that policies always post
prices that are integral multiples of γ

̅̅
d

√
, and thus,

!| | ≤O((γ ̅̅
d

√ )−1). The EXP4 guarantee in Equation (12)
implies that the performance of the algorithm is
away from the performance of the best policy by at
most

O
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T!| | ln(Π| |)√( )

� O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T

̅̅
d

√
γ

ln 1/γ
( )√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
If θ ∈ Rd is the true vector of weights, then the policy
that prices according to the discretized policy π�θ�γ
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always sells and incurs a discretization loss of at most
O(γ ̅̅

d
√ )per iterationwith respect to the optimal policy,

since �θ�γ′xt − θxt ≤ ||θ − �θ�γ || ≤ γ
̅̅
d

√
so that θ′xt ≥

π�θ�γ(xt) ≥θ′xt−2γ
̅̅
d

√
.

We now need to select a discretization parame-
ter γ that minimizes the sum of the learning loss
incurred by EXP4, O(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T
̅̅
d

√
γ ln(1/γ)

√
), and the loss due to

discretization, O(Tγ ̅̅
d

√ ). Choosing γ � (T ̅̅
d

√ )−1/3, we
obtain a regret bound of

O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T

̅̅
d

√
γ

ln
1
γ

( )√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +O Tγ

̅̅
d

√( )
� Õ T2/3d1/3

( )
.

This discretization is valid as long as γ ∈ (0, 1]. Com-
pared with ELLIPSOIDPRICING, the discretized version of
EXP4 offers a better regret bound with respect to d,
but a much worse regret bound with respect to T.

6.2.2. Instantiating EXP4 for the noisy regime. The key
modification required to adapt the analysis above to
the noisy regime is to change the definition of a pol-
icy as follows. Define p∗(v) � argmaxp p · Pr(v + δ ≥ p),
and for every discretized vector θ define

πθ(xt) � p∗ �θ′xt�γ ̅̅
d

√ − γ
̅̅
d

√( )
.

To show that the same regret bound of Õ(T2/3d1/3) also
holds in the noisy case, all we need to do is to show
that the total discretization loss is still O(Tγ ̅̅

d
√ ). The

following lemma proves this.

Lemma 5. Consider a random variable δ. Let p∗v � argmaxp ·[p· Pr(v + δ ≥ p)]. Let also Rv(p) � p · Pr(v + δ ≥ p). Then,
if v ∈ [v̂ − ε, v̂ + ε], then Rv(p∗̂v−ε) ≥ Rv(p∗v) − 2ε.

Proof. We first note that Rv(p) is monotone in v:

Rv(p∗̂v−ε) � p∗̂v−ε · Pr(v + δ ≥ p∗̂v−ε)
≥ p∗̂v−ε · Pr(v̂ − ε + δ ≥ p∗v−ε) � Rv̂−ε(p∗̂v−ε).

We next bound Rv̂−ε(p∗̂v−ε):
Rv̂−ε(p∗̂v−ε) ≥ Rv̂−ε(p∗v − (v − v̂ + ε))

≥ (p∗v − 2ε)Pr(v̂ − ε + δ ≥ p∗v − (v − v̂ + ε))
≥ Rv(p∗v) − 2ε.

The first inequality follows from the optimality of
p∗̂v−ε, the second inequality from v ∈ [v̂ − ε, v̂ + ε], and
the third inequality from the monotonicity of Rv(p). □

6.3. Combining SHALLOWPRICING and EXP4
In this subsection, we introduce a new algorithm,
ELLIPSOIDEXP4, which combines SHALLOWPRICING and
EXP4. This new algorithm will recover the logarithmic
regret with respect to T in the limit as the noise van-
ishes (σ → 0); incur regret similar to EXP4, Õ(T2/3),

in high-noise settings (σ � O(1)); and obtain an in-
termediate regret performance in moderately noisy
settings. Our results are in the spirit of earlier work
that smoothly interpolates between deterministic and
noisy regimes (Hazan and Kale 2011).7 The main idea
is to use the ellipsoid technique to prune the space of
possible policies such that all policies output only a
small set of actions per context. With that, we will
exploit the last term in Equation (12) to improve the
regret guarantee.
Our algorithmwillmaintain both an uncertainty set

Kt and a set of weights for each discretized point of the
uncertainty set, that is, for a fixed discretization pa-
rameter γ > 0, we will keep a weight w(θ) for each
θ ∈ �Kt�γ. We initialize K1 as before and w(θ) � 1 for
every θ ∈ �γ(K1)�γ. At each point, bt and bt refer to the
minimum andmaximumpossible values of θ′xt based
on the current uncertainty set. The algorithm has three
parameters: a discretization term γ, a shallow-cut
margin ε, and an EXP4 update parameter η.
The ELLIPSOIDEXP4 algorithm uses the same explore

prices and ellipsoid updates as SHALLOWPRICING. How-
ever, the exploit steps are replaced by EXP4 steps.
Whenever an explore step occurs, EXP4 is reinitialized.
Since we know from Theorem 3 that the number of
explore steps is relatively small, the EXP4 reinitiali-
zations are not very costly in terms of regret. ELLIP-

SOIDEXP4 proceeds as follows. In each period t:
• SHALLOWPRICING exploration: If bt − bt > ε, we price

at pt � 1
2 (bt + bt) andupdate theuncertainty set according

to the SHALLOWPRICING rule. When this occurs, we re-
start the EXP4 algorithm by resetting to 1 the weights
of all policies in �γ(Kt+1)�γ.
• EXP4: If bt − bt ≤ ε, we proceed according to the

EXP4 algorithm in the noisy regime with parameter
η, by selecting θ ∈ �γ(Kt)�γ with probability propor-
tional to w(θ), choosing the price pt � πθ(xt) (see the
policy definition in Section 6.2.2), and updating the
weights according to the EXP4 update rule. The un-
certainty set is unchanged, that is, Kt+1 � Kt.

Theorem4. Suppose8K1 � [0, 1]d. Then, theELLIPSOIDEXP4
algorithm with parameters ε � O(max{d5/2/T, dσ ln(T)}),
η� ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γd1/2 ln(1/γ)/(σT ln(T))√
, and γ�(d1/2T−1σ ln(T))1/3

incurs the following regret:

O d5/2 ln(T/d) · 1 + T2/3d2/3(σ ln(T))1/3 ̅̅̅̅̅̅̅̅̅̅
ln(T/σ)√[ ]( )

.

Proof. Recall that, with probability 1 − 1/T, δt| | ≤ σ ln(T)
for all t, so that SHALLOWPRICING will never remove the
true θ from the uncertainty set. There are at most
O(d2 ln(T/d)) iterations in which we use SHALLOWPRIC-

ING, so EXP4 is restarted at most as many times. In each
consecutive run of EXP4, we can bound the regret by
the bound of Equation (12) plus the additional loss
from discretization. By the condition that bt − bt ≤ ε,
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the policies πθ will suggest at most max(1, ε/(γ ̅̅
d

√ )) ≤
max(1, ̅̅

d
√

σ ln(T)/γ) actions (per round) by using the
definition of ε. If all policies suggest the same action
for all contexts, then the regret with respect to the
best policy is equal to zero. Otherwise, we can use
Equation (12) to bound the regret with respect to the
best action in �γ(Kt)�γ by

ln(γ−d)
η

+ ηT
2

·
̅̅
d

√
σ ln(T)
γ

� O
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tγ−1d3/2σ ln(T) ln(1/γ)

√( )
,

for η � ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γd1/2 ln(1/γ)/(σT ln(T))√

. The best policy in
�γ(Kt)�γ has regret at most O(Tγ ̅̅

d
√ ) with respect to

the optimal policy due to discretization, so the total
regret from a sequence of consecutive runs of EXP4
is at most

O
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tγ−1d3/2σ ln(T) ln(1/γ)

√
+ Tγ

̅̅
d

√( )
� O T2/3d2/3(σ ln(T))1/3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ln(T/(σ ̅̅

d
√

lnT))
√( )

for γ � (d1/2T−1σ ln(T))1/3. This quantity can be
bounded by

O T2/3d2/3(σ ln(T))1/3 ̅̅̅̅̅̅̅̅̅̅̅
ln(T/σ)√( )

.

By the guarantee in Theorem 3, there are at most
O(d5/2 ln(T/d)) runs of SHALLOWPRICING. Thus, there are
also at most O(d5/2 ln(T/d)) consecutive runs of EXP4,
and hence, the total regret is bounded by

O d5/2 ln(T/d) · [1 + T2/3d2/3(σ ln(T))1/3 ̅̅̅̅̅̅̅̅̅̅̅
ln(T/σ)√ ]

( )
. □

In the limit as the noise vanishes (σ → 0), ELLIPSOI-

DEXP4 recovers the performance of ELLIPSOIDPRICING.
In a high-noise setting (σ � O(1)), it performs ap-
proximately as well as EXP4. In moderately noisy
settings such as σ � O(1/ ̅

T̅
√ ), ELLIPSOIDEXP4 incurs a

regret of Õ( ̅
T̅

√ ), which is superior to EXP4’s perfor-
mance. The bounds we derived are potentially not
tight. For example, whether a regret bound better
than Õ(T2/3) can be obtained in a high-noise setting
under adversarial contexts is an open research question.

The reader should note that the technique of lo-
calizing the solution to a narrow region using SHAL-

LOWPRICING and then switching to a contextual bandit
algorithm is more broadly applicable, and EXP4
could be replaced by amore computationally efficient
algorithm. For example, if the feature vectors are
i.i.d., we can replace EXP4 by the stochastic gradient
approach of Amin et al. (2014) and obtain similar re-
gret bounds with a better computational performance.
Alternatively, one could replace EXP4 by one of the

recent computationally efficient approaches to con-
textual bandits by Syrgkanis et al. (2016a, b). This
would come at a cost, however, since these algorithms
yield aworse regret performance than EXP4.Wewant
to emphasize that this is not ameta-algorithm intowhich
one can plug a generic contextual bandit algorithm, but
rather a general design principle that can be applied to
several existing algorithms. For example, we rely on the
property that the regret dependson thenumberof actions
that couldpotentiallybe theoptimal action for anygiven
context (as opposed to the total number of actions). This
is fortunately true for all algorithms discussed above.

7. Extensions
In this section, we extend our results to nonlinear
market value models and to the case where the length
of the horizon T is not known in advance.

7.1. Nonlinear Models
So far,we assumed that themarket value follows a linear
model of the form vt � θ′xt. An alternative common
model is the logistic regression: vt � [1 + exp(θ′xt)]−1
(see Richardson et al. 2007 and Chakrabarti et al. 2008
for examples where market values are learned from
data via logistic regressions). More generally, a basic
set of features xt is often transformed by a featuremap
φ(·) to capture correlations and nonlinear depen-
dencies on the features. In applications of hedonic
pricing, popular models of market values are (i) the
log-log model ln vt � ∑

i θi ln(xt,i), and (ii) the semilog
(or log-linear) model ln vt � θ′xt. In all such cases, one
can express vt � f (θ′φ(xt)) for some given functions
f (·) and φ(·). Next, we argue that Theorem 2 can easily
be extended to this more general setting.

Proposition 1. Let f be a nondecreasing and continuous
function with Lipschitz constant L over the domain [−R,R].
Denote f̄ � f (R). Let φ(·) be a featuremap such that ||φ(xt) || ≤
1, and let the market value take the form vt � f (θ′φ(xt)) .
Then, the EllipsoidPricing algorithm with parameter ε �
f̄ d2/LT incurs regret O( f̄ Ld2 · ln(RT/f̄ d)).
Proof. Denote by x̃t � φ(xt), so that vt � f (θ′x̃t). For
every exploitation round, we know that the value
of θ′x̃t lies in an interval It � [bt, b̄t] of length at most
ε. The loss by pricing at f (bt) is at most f (b̄t) − f (bt) ≤ L·
(b̄t − bt) ≤ Lε. Using the trivial loss of f̄ in each ex-
ploration round, we obtain

Regret

≤ TLε + f̄ ·2d2 ln(20R(d + 1)/ε) ≤ O(f̄ ·d2 ln(RT/f̄ d)),
where the second inequality follows from taking
ε � f̄ d2/LT. □

Note that our Lipschitz assumption is different
from but somewhat related to the one in the line of
work on Lipschitz bandits (see Kleinberg et al. 2013
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and the references therein). In our setting, the un-
known is a d-dimensional vector, whereas in Lip-
schitz bandits the entire mapping from contexts to
values is unknown.

7.2. Unknown Horizon
An additional assumption that can be relaxed is the
knowledge of the time horizon T. Note that, when
we set the ELLIPSOIDPRICING parameter ε � Rd2/T in
Theorem 2,we need to know the value ofT in advance.
Byusing the standard doubling trick9 in online learning,
one can make the algorithm agnostic in T at the ex-
pense of a constant factor. Consequently, this extends
our result to the case where the value of T is unknown.
We construct a sequence of phases of doubly expo-
nential size: call phase 0 the first 22

0
time steps, phase 1

the next 22
1
steps, and so on, that is, phase k has 22

k
time

steps. In each phase k, we restart the algorithm (for-
getting all of the information gained in the past) and run
it with T � 22

k
. In other words, for each phase k, we

decrease ε to Rd2/22
k
and restart our algorithm.

Proposition 2. By applying the ELLIPSOIDPRICING algo-
rithm with ε � Rd2/22

k
in phase k, we obtain a total regret

O(Rd2 lnT), while being agnostic about the length of the
horizon T.

Proof. Given T time steps, let k̄ be the minimum value
such that

∑k̄
k�0 2

2k ≥ T. Therefore, for T time steps, the
algorithm will have k̄ ≤ �log2 log2 T� phases. The total
regret from all the time steps in phase k is at most
O(Rd2 ln(22k )) � O(Rd22k). Therefore, the total regret
over all phases is at most

∑�log2 log2 T�
k�0 O(Rd22k) �

O(Rd22log2 log2 T) � O(Rd2 lnT). □

8. Computational Experiments
In this section, we computationally test the performance
of the ELLIPSOIDPRICING algorithm. We also compare its
regret performance to EXP4’s.

8.1. Regret as a Function of lnT and d
So far, we have considered a setting where nature
adversarially selects the vectors of features xt at each
time, as well as the vector θ within a bounded set.
Computing an actual optimal (minimax) policy for
nature is a hard task, so we test our algorithm in a
stochastic environment. We consider the case where
nature selects both xt and θ in an i.i.d. fashion.
We consider a setting where the vectors xt and θ are

drawn i.i.d. from amultivariate Gaussian distribution
N(0, I), with each component being replaced by its
absolute value andwith the values normalized so that
‖xt‖ � 1 for all t. We also tested several other con-
tinuous distributions (e.g., uniform and exponential),
and the results in terms of regret happen to be very
similar.We vary the value ofT between 100 and 50,000
and the value of d between 5 and 30. For simplicity,
we use R � 1. In Figure 8(a), we plot the regret as a
function of lnT for different values of d; in Figure 8(b),
we plot the regret as a function of d with T � 10, 000.
The driving force behind the shape of the regret
function in Figure 8(a) is the fact that the scale of
the x-axis is logarithmic. For small values of T, the
curve looks exponential, because the regret is ap-
proximately linear in T while the algorithm is mostly
learning. When the algorithm switches to mostly
exploiting (earning), which occurs for medium and
large values of T, the curve becomes linear in lnT,

Figure 8. (Color online) Regret of the ELLIPSOIDPRICING Algorithm as a Function of lnT and d
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as predicted by our theorems. We also consider a setting
where xt are drawn i.i.d. from a Bernoulli distribu-
tion to represent binary features, where we obtain a
similar regret as Figure 8. (The plots are omitted for
conciseness.)

8.2. Adaptability
In the previous cases, the algorithm explores until some
threshold time, and then itmostlyexploits.The separation
between the exploration and exploitation phases follows
from the fact that the vectors xt are drawn from an
i.i.d. distribution. We illustrate this phenomenon in

Figure 9, where we plot the proportion of exploration
rounds as a function of time intervals of length T/20.
However, this is not always the case. As we men-
tioned earlier in the paper, our algorithm can explore
and exploit without a clear separation between the
phases. Depending on the amount of uncertainty in a
specific direction, it can decide whether to explore. To
illustrate this behavior, we test a situation where the
setting evolves over time by changing the distribution
of xt after half of the time periods have elapsed.
In what follows, we show that our algorithm can

adapt to dynamic environments. We consider two dif-
ferent settings, depicted in Figure 10. Figure 10(a)
considers the case where, in the first half of the iter-
ations (i.e., during the first T/2 time periods), the
vectors of features are the absolute values of com-
ponents drawn from normally distributedN(0, I), and
in the second half of the periods, the vectors of fea-
tures areuniformlydistributedU[−1, 1]d. (In both cases,
the vector xt is normalized such that ‖xt‖ � 1 for all t.)
Figure 10(b) considers the case where the vector is

random in the first half of the iterations, but the last half
of the components are zero. In other words, we have
random values in the first d/2 elements and 0 in the
second half. After T/2, all the d elements of xt are
random.Bothbefore andafter, all features aredrawn from
the same normalized Gaussian distribution. One can see
that, in the two different settings, the regret of our algo-
rithm remains low while adapting to the change in the
distribution. In these cases, the algorithm will explore
again when needed. Figure 11 shows the algorithm
starting to explore again after the change in distributions
atT/2, under the same settings as in Figure 10. This type

Figure 9. (Color online) Explore Rounds vs. Exploit Rounds
for the ELLIPSOIDPRICING Algorithm as a Function of T for
d � 15

Note. We show the average results over 100 independent instances.

Figure 10. (Color online) Regret of the ELLIPSOIDPRICING Algorithm as a Function of T for d � 15 When the Distribution of
the Features Changes at T/2

Note. We show the average results over 100 independent instances.
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of situation is very typical as the vectors of features can de-
pend on external factors such as seasonality and trends.

8.3. Comparing Our Algorithm to a Benchmark from
the Literature

We next compare the performance of our algorithm
to EXP4, a general-purpose regret-optimal algorithm
for adversarial contextual bandits (Auer et al. 2002).
We focus on low values of the dimension d � 2, . . . , 7

given that EXP4 has poor computational perfor-
mance in high dimensions. For computational conve-
nience, given the discretization used in EXP4, we draw
the parameters θ and xt uniformly at random in [0, 1]d.
The results of EXP4 depend on a parameter η which
represents the learning rate. We plot the results for
the best learning rate we could find for each instance.
As one can see from Figure 12, the ELLIPSOIDPRICING

algorithm yields a significantly smaller regret when

Figure 11. (Color online) Explore vs. Exploit Rounds for the ELLIPSOIDPRICING Algorithm as a Function of T for d � 15 When
the Distribution of the Features Changes at T/2

Note. We show the average results over 100 independent instances.

Figure 12. (Color online) Regret of ELLIPSOIDPRICING and EXP4 as a Function of lnT for Different Values of d

Note. The scales of the y-axes are different in the two plots.
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compared with EXP4. (The right panel has a y-axis
scaled by 104.) This is expected as EXP4 is a general-
purpose algorithm, whereas ELLIPSOIDPRICING is tai-
lored to our problem setting. It is still reassuring to
observe that ELLIPSOIDPRICING is able to reduce signif-
icantly the regret by exploiting the structure of our
problem. In addition, its running time is much lower,
allowing us to solve the problem for settings with
higher dimensions in reasonable timeframes.

We next test the performance of ELLIPSOIDPRICING,
SHALLOWPRICING, and EXP4 in a noisy setting. Specifically,
we consider an additive noise δt drawn i.i.d. Gaussian
with mean zero and standard deviation σ � 0.1,
T� 50,000, and d� 2,3,4,5. (As before, given EXP4’s
computational limitations, we restrict the dimension
to be low.) We compare the performance of ELLIP-

SOIDPRICING, SHALLOWPRICING, and EXP4 by comput-
ing the difference in regret relative to EXP4, that is,
Regret(EXP4) − Regret(ELLIPSOIDPRICING) and Regret ·
(EXP4) − Regret(SHALLOWPRICING). The results are
presented in Table 1. Both of our algorithms outperform
EXP4 even in the noisy setting. We also varied some
of the parameters such as T and σ and observed con-
sistent results.

8.4. Numerical Insights
This section allowed us to test and validate compu-
tationally the performance of the algorithms pro-
posed in this paper. We draw the following insights:

• Our results are robust to the distributions of both
the vector θ and the vectors of features xt. We tested
several different distributions (both continuous and
discrete) and observed that the magnitude of the regret
attained by our algorithm is robust to the distribution.

• Our algorithm is able to adapt to the data. In
particular, if the vectors of features vary in time and
have a time-dependent distribution, the algorithm still
estimates θ correctly and the regret remains small.
This follows from the fact that our algorithm does not
separate the exploration and exploitation phases, as in
some other classical approaches. Instead, the algorithm
always learns fromnew features and reacts accordingly.

• Our algorithm outperforms EXP4, a general-
purpose regret-optimal algorithm for adversarial con-
textual bandits for both noiseless and noisy settings.

9. Conclusions and Future Directions
In this paper, we considered the problem of pricing
highly differentiated products described by vectors of
features. The firm has to set the price of each product
in an online fashion. Themarket value of each product
is linear in the values of the features, and the firm does
not initially know the values of the different features.
Our goal was to propose an efficient online pricing
method by balancing the exploration/exploitation
tradeoff to achieve a low regret. We first considered
a multidimensional version of binary search over
polyhedral sets and showed that it has exponential
worst-case regret with regard to the dimension of the
feature space.We then proposed amodification of the
prior algorithm where uncertainty sets are replaced
by their Löwner-John ellipsoids. We showed that the
algorithmwe proposed has a worst-case regret that is
quadratic in the dimension of the feature space and
logarithmic in the time horizon.
We also proposed two variants of the algorithm that

add robustness to noisy valuations: (1) SHALLOWPRIC-

ING, which is based on shallow cuts of an ellipsoid,
allowing us to add a safety margin to each cut, and
(2) ELLIPSOIDEXP4, which is a combination of SHALLOW-

PRICING with the standard adversarial contextual bandit
algorithm EXP4. For ELLIPSOIDEXP4, we showed a re-
gret guarantee that (i) matches the bound of ELLIP-

SOIDPRICING as the noise vanishes, (ii) approximately
matches the regret guarantee of EXP4 in high-noise
settings, and (iii) leads to intermediate regret guar-
antees in moderately noisy environments.
We would like to end by discussing some future

research directions. Closing the gap between our regret
bound and the best-known lower bound ofΩ(d ln lnT)
is an interesting (and challenging) problem that we
do not attempt to resolve in this paper. Understanding
whether a better regret bound could be achieved in a
setting with stochastic rather than adversarial features is
another important open problem. A limitation of the
ELLIPSOIDEXP4 algorithm is its requirement to know a
bound on the noise parameter σ. An interesting ex-
tension is to develop an approach for estimating σ. The
case of anunknownσwith a Gaussian noise is tractable
under certain conditions. However, the general case
of estimating a σ-sub-Gaussian noise is left as an avenue
for future research. One last direction would be to con-
sider a setting where the parameter θ varies over time.
For example, one could consider a problem where, at
each period, a vector θt takes a different value, but
under the assumption of limited variation, that is,
||θt+1 − θt || ≤ Δt.
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Endnotes
1Though the value of outside options is normalized to zero in our
model, they can be incorporated by adding one additional feature
associated with the outside option value.
2The Õ(·) notation is a variant of the O(·) notation that ignores
logarithmic terms.
3The assumption of no outside value if the offer is rejected is without
loss of generality since the outside value could be encoded as an
additional feature with negative value associated with it.
4 If a sale does not occur at time t, the seller learns that θ′xt < pt.
However, in order to keep our uncertainty sets closed, we add the
constraint θ′xt ≤ pt to update the uncertainty set, rather than using
a strict inequality.
5Note that we slightly abuse notation by reusing the variable names
bt and bt in this section.
6This is a common assumption in the literature. The Gaussian dis-
tribution is σ-sub-Gaussian for its standard deviation σ. In addition,
uniform, Rademacher, and bounded random variables are all sub-
Gaussian for suitable σ parameters.
7There is also a line of research that interpolates between stochastic
and adversarial bandits (see Bubeck and Slivkins 2012, Lykouris
et al. 2018).
8This regret bound does not involve R since we assumed K1 � [0, 1]d.
Consequently, R � ̅̅

d
√

.
9 For settings like ours where the regret is logarithmic in T, the tech-
nique is sometimes called the squaring trick since the length of a phase is
the square of the length of the previous phase (see Amin et al. 2011).
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