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Abstract. Price discrimination strategies, which offer different prices to customers based
on differences in their valuations, have become common practice. Although it allows sell-
ers to increase their profits, it also raises several concerns in terms of fairness (e.g., by
charging higher prices (or denying access) to protected minorities in case they have higher
(or lower) valuations than the general population). This topic has received extensive atten-
tion frommedia, industry, and regulatory agencies. In this paper, we consider the problem
of setting prices for different groups under fairness constraints. We first propose four defi-
nitions: fairness in price, demand, consumer surplus, and no-purchase valuation.We prove
that satisfying more than one of these fairness constraints is impossible even under simple
settings. We then analyze the pricing strategy of a profit-maximizing seller and the impact
of imposing fairness on the seller’s profit, consumer surplus, and social welfare. Under a
linear demand model, we find that imposing a small amount of price fairness increases
social welfare, whereas too much price fairness may result in a lower welfare relative to
imposing no fairness. On the other hand, imposing fairness in demand or consumer sur-
plus always decreases social welfare. Finally, no-purchase valuation fairness always
increases social welfare. We observe similar patterns under several extensions and for
other common demand models numerically. Our results and insights provide a first step
in understanding the impact of imposing fairness in the context of discriminatory pricing.
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1. Introduction
The increased availability of consumer data in con-
junction with the widespread use of e-commerce has
led to a proliferation in discriminatory and personal-
ized pricing strategies both in practice (Xue et al. 2015,
Ye et al. 2018) and academia (Gallego and Topaloglu
2019, Elmachtoub et al. 2021). Specifically, companies
often try to engage in first- or third-degree price dis-
crimination tactics by leveraging the available data on
their consumers, such as past purchase behavior,
browsing history, and personal attributes, to predict
consumer valuations. Although the practice is gener-
ally widespread, discriminatory pricing can result in
disparate impact against protected groups. Protected
groups may have higher (or lower) valuations for a
product because of historical disadvantages or unob-
served factors, and such differences can result in
higher prices (or more limited access) for protected
groups. Charles et al. (2008) show that Black in-
dividuals receive higher interest rates for auto loans,

whereas Alesina et al. (2013) show that women receive
higher interest rates for small business loans even
after controlling for other consumer features. Fang
and Munneke (2020) and Bartlett et al. (2022) show
that Black/Latinx and women borrowers pay higher
interest rates for mortgage loans while controlling for
all possible factors, including risk. In fact, the study in
Bartlett et al. (2022) even shows that this discrimina-
tion exists for FinTech lenders that make decisions
based on AI algorithms. Larson et al. (2015) show that
a test preparation provider charged Asian Americans
higher prices, even when controlling for income. In all
these examples, the number of transactions is at a
very large scale. Thus, it suggests that the seller’s
motivation to carry forward such statistical discrimi-
nation is driven by financial gain. In contrast, the U.S.
Civil Rights Act of 1964 and the Equal Credit Oppor-
tunity Act of 1974 protect against discrimination
based on protected attributes, such as race, color, reli-
gion, sex, and national origin as well as most recently,
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sexual orientation and gender identity.1 In fact, in
2020 the state of New York banned gender-based
price discrimination2 to fight against the increasing
trend of large retailers selling the same product at dif-
ferent prices by simply changing the packaging or the
product color.3 Ensuring fairness is a direct concern of
the Federal Trade Commission (FTC).

When we at the FTC evaluate an algorithm or other
AI tool for illegal discrimination, we look at the
inputs to the model—such as whether the model
includes ethnically-based factors, or proxies for such-
factors, such as census tract. But, regardless of the
inputs, we review the outcomes. For example, does a
model, in fact, discriminate on a prohibited basis?
Does a facially neutral model have an illegal dispa-
rate impact on protected classes? Our economic anal-
ysis looks at outcomes, such as the price consumers
pay for credit, to determine whether a model appears
to have a disparate impact on people in a protected
class. —Andrew Smith4

Recently, there has been a surge of interest in
understanding how to make discriminatory pricing
practices that are fair from business (Wallheimer 2018,
Weinberger 2019), legal (Gerlick and Liozu 2020, Gillis
2020), and regulatory perspectives (White House
2015, Gee 2018). Moral, legal, and ethical obligations
are prompting sellers and regulators to ensure that
pricing practices do not unfairly discriminate against
protected attributes. Although this general principle is
universally accepted, no formal framework prior to
this work exists to properly implement or assess the
impact of such fairness measures in the context of
pricing decisions. In fact, in a recent discussion paper
by the United Kingdom’s Financial Conduct Authority
(Gee 2018), it clearly states the need for conducting
research on fairness in pricing.

[I]t is important that we consider the fairness of pric-
ing in markets we regulate. It is also important to
consider the harm that may be caused by particular
types of pricing practice … However, fairness issues
can often be more complicated and the right course of
action for us may be less clear. (Gee 2018, p. 5)

In light of the growing interest on fairness in the
context of pricing decisions, we consider the following
research questions.

1. How can we model the fairness of decisions made
in the context of price discrimination? Is it possible to
impose several types of fairness simultaneously?

2. What is the impact of fairness constraints on the
seller, customers, and society at large?

In this paper, we propose a formal framework for
pricing with fairness, including several definitions of
fairness and their potential impact on consumers, sell-
ers, and society. In a first step toward the ambitious
agenda of designing pricing strategies that are fair, we

consider the simplest scenario of a single-product
seller facing consumers who can be partitioned into
two groups based on a single binary feature observ-
able to the seller (we then consider the extension with
more than two groups in Section 4). For each group,
we assume that the seller knows the valuation distri-
bution, which allows us to isolate the effect of fair
decision making from the machine learning task of
predicting valuations. The seller’s goal is to maximize
profit by optimally selecting a price for each group,
potentially subject to a fairness constraint that may be
self-imposed or explicitly enforced by laws and regu-
lations. We highlight that our model assumes that
price discrimination occurs because of the difference
in valuation distributions of the customer groups and
not because of inherent racism or biases of the seller.

In this paper, we propose four definitions of fair-
ness based on several different contexts and motiva-
tions. More details and motivation are presented in
Section 2.1.

• Price fairness enforces that the prices offered to the
two groups are nearly equal and is the common focus
of the studies referenced.

•Demand fairness enforces that the access to the prod-
uct is as close as possible across groups, meaning that
the prices should be set in a way that yields a similar
market share for each group. For example, a local col-
lege may want to offer tuition loans or scholarships in
such a way that each group has an equal probability of
enrolling.

• Surplus fairness requires that the surplus of the
average person in each group is similar. As is standard,
surplus is defined as the consumer valuation minus the
price paid, and it is zero if no purchase is made.

• No-purchase valuation fairness imposes that the aver-
age valuation of consumers who do not purchase the
product is approximately the same for each group. In
other words, the normalized value lost in each group
from individuals who could not afford the product
should be similar.

With our model and definitions in place, we first
show that satisfying all four fairness goals simultane-
ously is impossible unless the mean valuations are the
same for both groups. In fact, even achieving two fair-
ness measures simultaneously cannot be done in sim-
ple settings. We then consider the impact of imposing
each fairness criterion separately and identify condi-
tions under which the consumer surplus and the
social welfare increase or decrease. (Clearly, imposing
fairness always results in profit loss for the seller
because of the additional constraint.) Note that the
impact of price discrimination on social welfare has
been studied in economics (Robinson 1969, Varian
1985) but without explicitly considering fairness con-
straints. For instance, we show that when the demand
for each group is linear or exponential in price, a small
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amount of price or no-purchase valuation fairness will
increase social welfare, whereas demand or surplus
fairness will decrease social welfare. We also fully
characterize all scenarios under linear demand and
show, for example, that imposing too much price fair-
ness may lead to a strictly lower social welfare relative
to having no fairness constraints. We first focus on the
setting with two groups and a single (protected) fea-
ture. We then extend our findings to settings with
more than two groups and to the case where a second
unprotected consumer feature is observed. Finally, we
showcase computationally the robustness of our find-
ings for other common demand models, such as expo-
nential, logistic, and log-log.

1.1. Summary and Implications of Our Research
For industry practitioners and policy makers, our
paper offers the following takeaways.

a. We show that achieving all four fairness definitions
simultaneously is impossible. In fact, even achieving two
of these definitions simultaneously is impossible under
standard demand models. Thus, one should focus on a
single notion of fairness depending on the context.

b. Imposing fairness constraints may not necessarily
increase social welfare. The welfare change depends on
both the fairness definition and the level of fairness.
For price fairness, a little fairness improves social wel-
fare, but too much fairness may lead to a lower welfare
relative to imposing no fairness. For demand or surplus
fairness, imposing any level of fairness will decrease
social welfare. Finally, no-purchase valuation fairness
always increases social welfare.

1.2. Related Literature
The concept of fairness has been extensively studied in
economics, operations management, and computer sci-
ence. Broadly speaking, fairness can be modeled either (i)
as a utility term that is dependent on a reference point or
(ii) as an exogenous constraint that may be imposed by a
social planner based on social justice. Our work adopts
the second approach, but we still review the literature
related to both approaches for completeness.

In the economics literature, fairness is typically
modeled as a reference effect, which depends on
either a perceived value based on historical informa-
tion or unequal outcomes across groups of individu-
als. In such settings, fairness is motivated in light of
social comparison. Fairness with respect to perceived
value refers to the situation where the price of an item
should be close to its “fair” value. More precisely, cus-
tomers form a reference price (based on historical
information), and the demand is affected when the
seller sets a price that is far from the reference price.
This concept was first proposed by Kahneman et al.
(1986), where the authors empirically show that peo-
ple perceive a price raise as unfair if the surge is

driven by shifts in demand. Eyster et al. (2021) then
study the pricing problem under this type of fairness.
Models based on a reference price were extensively
studied in the context of dynamic pricing (Popescu and
Wu 2007, Cohen et al. 2020) and for the newsvendor
problem (Baron et al. 2015). On the other hand, several
papers consider fairness with respect to unequal out-
comes across groups of individuals (e.g., race, age, gen-
der). Rabin (1993) and Fehr and Schmidt (1999) are
among the first to study game-theoretic models with
fairness considerations. Rabin (1993) models fairness as
an explicit intention and shows that a fairness equili-
brium may be achieved only if the Nash equilibrium
also satisfies additional fairness constraints. In Fehr and
Schmidt (1999), the need for fairness is modeled as a dis-
utility for any unequal outcome among players. Ho and
Su (2009) consider ultimatum games with peer-induced
fairness concerns. Using a similar setting, Cui et al.
(2007) consider a contract design problem and find that
cooperation may be achieved when the manufacturer
and retailer are sensitive to unequal outcomes. Li and
Jain (2016) study a duopoly market with behavior-based
pricing and find that incorporating fairness may
increase sellers’ profit and decrease consumer surplus.

The second approach in the fairness literature models
fairness as exogenous constraints in decision-making or
classification problems. The fairness constraints are usu-
ally motivated by egalitarianism, where each group of
people (or even each individual) should receive the same
treatment, or by Rawlsian justice (Rawls 1971), where the
social planner aims to make the least advantaged people
better off. Decision making under fairness constraints has
been seen in the context of stable matching (Sethuraman
et al. 2006), transportation systems (Chen and Wang
2018), network design (Rahmattalabi et al. 2019), advertis-
ing (Bateni et al. 2016), and dynamic learning (Gupta and
Kamble 2019). Levi et al. (2016) investigate conditions
under which uniform government subsidies are optimal.
Another stream of papers considers the trade-off between
fairness and efficiency in resource allocation (Bertsimas
et al. 2011, 2012; Hooker andWilliams 2012; Donahue and
Kleinberg 2020). In our paper, we do not consider
resource constraints, and we investigate to what extent
our fairness constraints can improve social welfare.

Research on fairness has also been increasing rap-
idly in the machine learning community, and fairness
is also modeled as exogenous constraints. Earlier
papers consider classification algorithms under vari-
ous fairness constraints (Dwork et al. 2012, Hardt et al.
2016, Donini et al. 2018) or the trade-off between dif-
ferent fairness metrics (Chouldechova 2017, Kleinberg
et al. 2017). Kallus et al. (2021) provide a framework
for assessing fairness without observing the protected
attribute. There has also been work on how to design
fair policies using causal inference (Nabi et al. 2019,
Kasy and Abebe 2020, Viviano and Bradic 2020). In fact,
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in the context of classification problems, several papers
have tried to integrate social welfare into the loss func-
tion (Heidari et al. 2018, 2019; Hu and Chen 2018, 2020).
Although the fairness definitions in our paper resemble
those in the machine learning literature, we consider
the problem from a different perspective. The pricing
procedure usually includes two steps: valuation predic-
tion and pricing decisions. Machine learning models
mainly focus on the first step, and the idea is to distrib-
ute the prediction error in a fair manner so that the pre-
diction is unbiased. Our paper assumes that the seller
has unbiased and accurate information on customer
segmentation and valuations and focuses on how to
make fair pricing decisions given such information.

Finally, one can view uniform pricing as a revenue
management problemwith a (simple) fairness constraint.
In this view, our paper contributes to the line of research
that compares social welfare under a uniform pricing
strategy (i.e., perfect price fairness) versus discriminatory
pricing (i.e., no fairness) (see, e.g., Robinson 1969, Schma-
lensee 1981, Varian 1985). Our paper includes these two
extreme cases but also, considers intermediate levels of
fairness constraints as well as four different fairness defi-
nitions. This literature shows that allowing for price dis-
crimination generally leads to a higher social welfare
compared with uniform pricing (ultimately converging
to the situation where the seller is able to extract the
entire consumer surplus). Surprisingly, our results show
that restricting price discrimination by imposing fairness
constraints can sometimes increase social welfare. In fact,
we identify cases where imposing intermediate levels of
fairness results in a social welfare that is higher than
both perfect fairness and no fairness scenarios.

2. Framework and Preliminary Results
We consider a single-period setting where a seller
offers a single product, with marginal cost c ≥ 0, to
two groups of customers (we consider the extension
with more than two groups in Section 4). The seller
needs to select a price for each group with the goal of
maximizing profit. Specifically, customers are catego-
rized based on an observable binary feature X ∈ {0, 1},
so that each group i � 0, 1 can be offered a different
price pi. In this context, the seller may want to con-
strain the pricing policy to ensure fairness across the
two groups because of a need to either improve cus-
tomer perception or abide by government regulations.
For example, X can correspond to gender, race, oper-
ating system, age, or type of device. We let di denote
the population size of each group i. We assume that
customers from group i have valuations for the prod-
uct denoted by the random variable Vi ~ Fi(·), where
Fi(·) is a given cdf. Customers in group i buy the prod-
uct only if their valuation is at least the offered price
pi. Thus, F̄i(pi) � P(Vi ≥ pi) represents the market share

of group i, and diF̄i(pi) corresponds to the total
demand of group i. We assume that the seller has
enough supply to fulfill all the demand.

The profit function for group i is then Ri(pi) �
(pi − c)diF̄i(pi). The seller’s goal is to select p0 and p1 to
maximize R0(p0) +R1(p1), potentially subject to some
fairness constraints (see more details). We let p∗i �
argmaxpRi(p) denote the optimal price offered by the
seller to group i under no fairness constraints: that is,
the unconstrained optimal price. We capture con-
sumer welfare by the average consumer surplus given
by Si(p) � E[(Vi − pi)+] (note that we focus on the nor-
malized surplus to account for possible asymmetries
in population sizes). We also consider the expected
no-purchase valuation, Ni(p) � E[Vi | Vi < pi], that cor-
responds to the average valuation of nonbuyers.
Finally, the total welfare from group i, Wi(pi), can be
written as the profit plus the consumer surplus: that
is,Wi(pi) � Ri(pi) + diSi(pi):

2.1. Fairness Definitions
In the context of pricing, we propose the four follow-
ing measures of fairness, where smaller quantities
imply fairer strategies.

a. Price fairness, which is measured by |p0 − p1 | :
b. Demand fairness, which is measured by |F̄0(p0) −

F̄1(p1)| :
c. Surplus fairness, which is measured by |S0(p0) −

S1(p1)| :
d. No-purchase valuation fairness, which is meas-

ured by |N0(p0) −N1(p1)| :
We also propose a unitless quantity, α ∈ [0, 1], to

denote the fairness level. The case of α � 0 corresponds
to no fairness constraints (i.e., unconstrained discrimi-
natory prices are used), and the case of α � 1 corre-
sponds to perfect fairness (i.e., the groups are treated
equally with respect to the fairness measure). We
emphasize that α is not a decision variable but rather, a
parameter that is selected by the seller to meet internal
goals or satisfy regulatory requirements. Formally, let
Mi(pi) be the specific fairness measure of interest (price,
demand, surplus, or no-purchase valuation) under
price pi, and let |M0(p∗0) −M1(p∗1)| be the fairness gap
under the optimal (unconstrained) pricing strategy. Then,
a pricing strategy pi for i � 0, 1 is α fair with respect
to Mi(·) if |M0(p0) −M1(p1)| ≤ (1− α) |M0(p∗0) −M1(p∗1)|.
Imposing a specific amount of fairness for each measure
corresponds to selecting a value for α. Specifically, the
pricing problem for the seller becomes

R(α) :� max
p0,p1≥0 R0(p0)+R1(p1)
s:t: |M0(p0)−M1(p1)| ≤ (1−α) |M0(p∗0)−M1(p∗1)| ,

(1)

where R(α) denotes the optimal total profit as a func-
tion of the fairness level α. For convenience, we denote
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p0(α) and p1(α) the optimal prices obtained by solving
Problem (1) as a function of the fairness level α. Thus,
R(α) � R0(p0(α)) +R1(p1(α)). We note that pi(α) may
sometimes be less than c in order to meet the fairness
constraints. We define S(α) as the total consumer sur-
plus under the optimal prices with the α-fairness con-
straint (i.e., S(α) � d0S1(p0(α)) + d1S1(p1(α))). Also, we
let W(α) �R(α) + S(α) be the social welfare as a func-
tion of α.

The fairness definitions are motivated from practi-
cal and regulatory considerations. Price fairness is
directly motivated by regulations and laws that pro-
scribe price discrimination based on specific attrib-
utes, such as the U.S. Civil Rights Act and Equal
Credit Opportunity Act. In fact, the U.S. Department
of Housing and Urban Development makes it illegal
to “impose different terms or conditions on a mort-
gage loan, such as different interest rates, points, or
fees on the basis of race, color, national origin, reli-
gion, sex, familial status, or disability.”5 In October
2020, New York state banned gender-based price dis-
crimination after observing that many products and
services in brick-and-mortar locations were being sold
at different sticker prices for men and women. The
idea of imposing a price fairness constraint is men-
tioned directly by the UK Financial Conduct Author-
ity (Gee 2018) via “relative price caps” that “impose
limits on the differences in prices firms can charge to
new and longstanding consumer groups” as an option
to alleviate unfair pricing in financial services. As we
mentioned in Section 1, several studies have found
violations of price fairness, even after controlling for
all relevant consumer features. In fact, Bartlett et al.
(2022) even show that such price discrimination exists
when decisions are made by AI algorithms, and we
noted that the FTC also explicitly protects against
algorithmic bias. All the aforementioned examples are
occurring at a fairly large scale by sizeable lenders
and retailers, so these practices cannot just be
explained by inherent racism or sexism. A fundamen-
tal possibility is that the groups of consumers who
receive higher prices have a higher valuation on aver-
age relative to the other groups. This phenomenon
can occur for several reasons. First, it is well recog-
nized that there exist significant gender and racial dif-
ferences in preferences in terms of products’ colors
(Madden et al. 2000). Similarly, Byun and Park (2012)
show that East Asian Americans are 1.5 times more
likely to purchase commercial test preparation serv-
ices, which indicates that this group tends to have a
higher valuation for such services. Second, this phe-
nomenon can occur when a group of people has a
higher average search cost or less bargaining intensity
(Fang and Munneke 2020), so they are willing to accept
higher prices to reduce the searching process (e.g.,
applying for a new loan). Third, a higher valuation can

also occur when a specific group is unable or less likely
to know the competitors’ prices (Bartlett et al. 2022),
which can happen when a group is more likely to be
located in a financial desert or is less likely to be eligible
for a loan. Fourth, another potential reason for different
valuation distributions is the difference in financial liter-
acy across groups (Gillis 2020). We note that many of
these factors can potentially be connected to systemic
racism and sexism, although this is beyond the scope of
our paper.

Demand fairness is well motivated by applications in
education and healthcare. For instance, a local college
may want to charge tuition in a way such that it ensures
a well-represented population of students (i.e., giving
an equal opportunity to students coming from all back-
grounds and income levels). In the same vein, a health-
care service provider or an insurance company may
want to set prices so that every group has an equal
chance of affording proper care. It is common for phar-
maceutical companies to charge different prices in dif-
ferent countries (depending on the median income). In
these types of settings, demand fairness ensures that
access to essential products and needs is offered equally
among all groups of customers.

Imposing surplus fairness requires the difference in
normalized surplus to be small, so that individuals
from different groups are similarly satisfied. Consumer
surplus is perhaps the most widely used notion in eco-
nomics and operations management to measure the
well-being of customers in the context of retailing (see,
e.g., Brynjolfsson et al. 2003, 2019; Cohen et al. 2016).
The concept of equal surplus (agents’ welfare) is one of
the most fundamental principles in economics research
(see, e.g., Dworkin 1981, Arneson 1989) and has been
extensively studied in resource allocation (Brams and
Taylor 1996) and cooperative game theory (Hu et al.
2018). Given the importance of surplus management
and the popularity of equal surplus in several economics
applications, it is natural to design pricing policies that
ensure that the consumer surplus (which can be seen as
a proxy for happiness or satisfaction) in each group is
relatively similar. Our definition of surplus fairness can
be seen in Marcoux (2006), where the author argues that
“a unitary price [equal prices] affords unequal degrees
of utility enhancement [unequal surplus] to buyers.”

Finally, we discuss no-purchase valuation fairness.
When defining fairness measures in the context of
pricing, it is important to also consider the customers
who could not afford the product (because their price
exceeds their valuations). Indeed, the nonbuyers are
directly affected by discriminatory pricing policies.
For example, individuals who need a loan the most
may be offered a higher interest rate from banking
institutions, which further prevents these individuals
from accessing the service. The nonbuyers from one
group may feel particularly discriminated against if
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their willingness-to-pay is higher than the nonbuyers of
the other groups, which may lead to potential com-
plaints or lawsuits. The prices offered to each group con-
trol the number of nonbuyers as well as how much the
average nonbuyer was willing to pay. The report by the
Financial Conduct Authority (FCA 2019) mentions that
the significance of the harm caused by unfair pricing is
not only measured by how many people are harmed but
also, by how much the individual level of harm is: “if a
small minority of consumers are affected, but we find
that these consumers are a particularly vulnerable group
of consumers and the level of individual harm is severe,
we would likely be more concerned about the fairness
of the pricing practice.” Because the utility of nonbuyers
in each group is zero, it is thus natural to measure the
average level of individual harm among a group by
looking at their valuation for the product. Although
demand fairness accounts for the fraction of people who
cannot afford the product, no-purchase valuation fair-
ness measures the average individual level of harm
within nonbuyers. No-purchase valuation fairness aims
to ensure that one group of nonbuyers was not more
dissatisfied than the other by measuring how much
the groups were willing to spend. As we show later,
no-purchase valuation fairness tends to provide the larg-
est increase in social welfare (see Section 3.4 for a
detailed discussion).

We note that our fairness definitions can be also
connected to Rawls’ principles of justice (Rawls 1999).
In particular, demand fairness can be thought of as a
reflection of the equal opportunity principle, whereas
price, surplus, and no-purchase valuation fairness can
be seen as a reflection of the difference principle (in
which any economic inequalities should benefit the
least advantaged individuals).

In this paper, we characterize the pricing strategy of
a profit-maximizing seller that needs to comply with
such fairness constraints. We also discuss the resulting
impact on consumer surplus and social welfare. Note
that one can come up with alternative fairness defini-
tions beyond the ones we proposed. However, as we
show in Section 2.2, our four definitions do not have
redundancies in the sense that it is impossible to satisfy
all of them perfectly at once. In fact, satisfying any pair
of fairness measures perfectly is often not possible.

2.2. Impossibility Results
In an ideal world, regulators would impose perfect
fairness (i.e., α � 1) along all four definitions, so that
customers across both groups will experience the
same price, demand, surplus, and no-purchase valua-
tion. The following theorem states that imposing
1-fairness across all four definitions simultaneously
requires the necessary (and insufficient) condition that
both groups have the same mean valuation. Such an

assumption is very restrictive in practice, as different
groups often have a different mean valuation. Impos-
sibility results have been shown in the context of fair-
ness for machine learning algorithms (Chouldechova
2017, Kleinberg et al. 2017) but under a setting related
to misclassification errors rather than prescriptive
pricing.

Theorem 1 (Impossibility of Perfect Fairness). IfE[V0]≠
E[V1], then it is impossible to achieve 1-fairness in price,
demand, surplus, and no-purchase valuation all simulta-
neously.

Proof. Suppose for the sake of contradiction that there
exists a pricing strategy that is 1-fair in price, demand, sur-
plus, and no-purchase valuation. 1-fairness in price
implies that there exists a price p such that p0 � p1 � p.
1-fairness in demand implies that P(V0 ≥ p) � P(V1 ≥ p).
Satisfying 1-fairness in surplus and no-purchase
valuation implies that E[(V0 − p)+] � E[(V1 − p)+]
and E[V0 | V0 < p] � E[V1 | V1 < p]. By the law of total
expectation (combined with adding and subtracting
p to one of the conditional expectations), E[Vi] � E[Vi |
Vi < p]P(Vi < p) +E[(Vi − p)+] + pP(Vi ≥ p), and thus,
E[V0] � E[V1], which contradicts our assumption. w

In fact, under common demand models such as lin-
ear and exponential, even achieving 1-fairness in two
metrics simultaneously is difficult. Specifically, we
show that for exponential demand, any pair of
1-fairness constraints cannot coexist unless the price is
trivially set to zero. For linear demand, only 1-fairness
in price and no-purchase valuation can be achieved
simultaneously.

Proposition 1 (Impossibility for Linear and Exponential
Demand). Assume that the demand is as follows.

a. Exponential: that is, Vi ~ Exp(λi) with λ0 ≠ λ1. Then,
any pair of 1-fairness in price, demand, surplus, and
no-purchase valuation cannot coexist under positive prices.

b. Linear: that is, Vi ~U(0,bi) with b0 ≠ b1. Then, only
1-fairness in price and no-purchase valuation may coexist,
and any other pair of 1-fairness in price, demand, surplus,
and no-purchase valuation cannot coexist under positive pri-
ces and positive demand.

Note that even when the mean valuations are equal
(i.e., E[V0] � E[V1]), it is also readily possible that satis-
fying all the 1-fairness constraints simultaneously is
impossible unless the prices are trivially set to zero. We
illustrate such a case in the following example. Specifi-
cally, in Example 1, we provide an example where
E[V0] � E[V1], and only 1-fairness in price and demand
can be satisfied simultaneously with positive prices (any
other pair of fairness constraints cannot coexist).

Example 1 (Impossibility When Mean Valuations Are
Equal). Suppose that V0 ~U(0, 2) and V1 ~ Exp(1).
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We find that 1-fairness in price and demand can be
simultaneously satisfied when p � 1.594. However, for
any price p > 0, we have S0(p) < S1(p) and N0(p) >
N1(p), so that 1-fairness in price cannot coexist with
either 1-fairness in surplus or in no-purchase valua-
tion. Suppose that we have 1-fairness in demand, and
let q ∈ (0, 1) be the market share for each group. (Note
that q > 0 because group 1 follows an exponential
demand and that q < 1 because p > 0.) We then have
p0 � 2− 2q and p1 � −logq. Therefore, we obtain
S0(p0) � q2 and S1(p1) � q, and thus, S0(p0) < S1(p1) for
any q ∈ (0, 1). Similarly, N0(p0) � 1− q and N1(p1) �
1+ qlogq

1−q , so that N0(p0) >N1(p1) for any q ∈ (0, 1). As a
result, 1-fairness in demand cannot coexist with
either 1-fairness in surplus or in no-purchase valua-
tion. Finally, under 1-fairness in surplus, we have
S0(p0) � (2− p0)2=4 � e−p1 � S1(p1), implying that p0 �
2− 2e−p1=2: Consequently,N0(p0) � 1− ep1=2 andN1(p1) �
1− p1e−p1

1−e−p1 . One can show that N0(p0) <N1(p1) for any
p1 > 0, and thus, 1-fairness in no-purchase valuation is
not possible. Hence, only 1-fairness in price and demand
can be satisfied simultaneously with positive prices in
this example.

In general, the discussion conveys that seeking fair-
ness in multiple dimensions may not be feasible in
most cases. Theorem 1 shows that achieving perfect
fairness across all four definitions is impossible if the
mean valuation of each group is different. Proposition 1
shows that satisfying two fairness definitions simulta-
neously is not possible even under simple demand
models, and Example 1 shows that the same idea can
be true (except for one combination) when the mean
valuations are the same. These results prompt us to
focus on the case where a company or a regulator con-
siders the impact of imposing a single fairness con-
straint up to a certain level of α, which is easier to
achieve. Specifically, we study the impact of fairness on
the seller’s profit, consumer surplus, and social welfare.

2.3. Imposing a Little Fairness
In this section, we consider imposing a small amount
of fairness and examine whether it increases social
welfare. Although it is clear that imposing fairness
will decrease the seller’s profit, we are interested in
the impact on social welfare. One may naturally con-
jecture that one of the motivations behind imposing
fairness in pricing is to increase social welfare.

Recall from Problem (1) thatR(α) is the total seller’s
profit under an α-fairness constraint (where the meas-
ure is clear from the context). Recall also that S(α) is
the total consumer surplus under the optimal prices
with the α-fairness constraint (i.e., S(α) � d0S1(p0(α)) +
d1S1(p1(α))), and W(α) �R(α) + S(α) is the social wel-
fare as a function of α.6 Theorem 2 shows that the

impact of imposing a small amount of fairness on
social welfare crucially depends on the fairness defini-
tion. Mathematically, we are interested in cases where
the (right) derivative of the social welfare at α � 0,
W′(0), is positive.7 To gain analytical tractability, we
consider two common demand models: linear and
exponential.

Theorem 2 (Impact of Imposing a Little Fairness on
Social Welfare). Assume that the demand is either (i) lin-
ear (i.e., Vi ~U(0,bi) with b0 ≠ b1) or (ii) exponential (i.e.,
Vi ~ Exp(λi) with λ0 ≠ λ1). Then, W′(0) > 0 under price
or no-purchase valuation fairness, whereas W′(0) < 0
under demand or surplus fairness.

Theorem 2, proved in Online Appendix A, conveys
that for linear or exponential demand, imposing a
small amount of fairness in price or no-purchase valu-
ation improves social welfare, whereas imposing a
small amount of fairness in demand or surplus
decreases social welfare. In fact, one can identify a
general necessary condition under which W′(0) > 0
for any demand function that leads to continuous and
differentiable Ri(·), Si(·), and Wi(·) at p∗i (the exact
condition does not provide any further insight and is
thus omitted for conciseness; see Lemma A.1 in
Online Appendix A for more details). Our result sug-
gests that if a seller is keen on using price discrimina-
tion tactics, then it is possible that imposing a small
amount of fairness (α > 0) can increase social welfare
compared with no fairness (α � 0). This is a surprising
complement to classic economics, which suggests that
a seller relaxing the strategy from uniform pricing
(one group) to discriminatory pricing (two groups
with α � 0) will increase social welfare.

To derive additional insights, we next focus on the
case of uniform valuations (i.e., linear demand). We
then test the robustness of our findings for three alter-
native demand models in Section 5.

3. Analysis for Linear Demand
In this section, we present a comprehensive analysis for
the linear demand model. Specifically, we assume that
F̄i(p) �max{0, 1− 1

bi
p} or equivalently, Vi ~U(0,bi).

Without loss of generality, we impose c < b0 < b1. The
linear demand model is commonly used in various
settings. Not only does linearity make our analysis
tractable, it can also be viewed as a near-optimal
approximation to more complex demand models (see,
e.g., Besbes and Zeevi 2015, Cohen et al. 2021). We con-
sider the case with two groups and study the impact of
imposing each type of fairness. We then consider the
case with N groups in Section 4.1 and incorporating an
unprotected feature in Section 4.2. We consider nonlin-
ear demand in Section 5.
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Under linear demand, the market share, profit, and (nor-
malized) consumer surplus for each group i � 0, 1 are given
by F̄i(pi) �max{0, 1− 1

bi
p}, Ri(pi) � di(pi − c)F̄i(pi), Si(pi) �

(bi−pi)F̄ i(pi)
2 , and Ni(pi) � min{bi,pi}

2 , respectively. It is well
known that the optimal unconstrained price for each
group is given by p∗i � (bi + c)=2. At p∗i , the demand, con-
sumer surplus, and no-purchase valuation for group i
reduce to F̄i(p∗i ) � (bi − c)=2bi, Si(p∗i ) � (bi − c)2=8bi, and
Ni(p∗i ) � (bi + c)=4, respectively. Because b0 < b1, all of
price, demand, surplus, and no-purchase valuations are
lower for group 0 than for group 1. We naturally restrict
the prices to be larger than zero, but they may be below
the cost c (this captures the situation when it is optimal
for the seller to earn a negative profit for one group in
order to extract a high positive profit from the other
group while enforcing fairness constraints). We next dis-
cuss the optimal pricing strategy and the potential impact
of imposing each type of fairness constraint for a given α.

The price optimization problem with fairness con-
straints is not a straightforward extension of the nomi-
nal setting (i.e., without fairness constraints). Under lin-
ear demand, the profit function for each group is
concave for p ∈ [0,bi]. In our analysis, when imposing
fairness constraints, we will show that one of the prices
may reach the boundary 0 or bi, thus potentially making
Problem (1) nonconvex. In the left panels of Figure 1,
we show an example of the price dynamics, pi(α),
under each of the four fairness constraints. Interest-
ingly, the four fairness constraints lead to totally differ-
ent pricing strategies. Further, for three of the four con-
straints (price, surplus, and no-purchase valuation),
there are nonlinear price changes. Given that the price
strategies vary across different fairness constraints, the
impact on profit, consumer surplus, and social welfare
is also different (see the right panels of Figure 1). We
next provide closed-form expressions for the optimal
prices as a function of α under each fairness measure,
which allow us to assess the impact on the seller’s
profit, consumer surplus, and social welfare. All the
proofs can be found in Online Appendix B.

3.1. Price Fairness
In this section, we consider imposing price fairness.
As α starts to increase, p0(α) increases, whereas p1(α)
decreases. Consequently, group 0 (group 1) is earning
a lower (higher) surplus. Then, when α becomes large
enough, it is possible that p0 is set to be higher than b0.
This implies that it is optimal for the seller to “give
up” group 0 (i.e., the demand from group 0 is zero).
At this point, it is equivalent to simply set p0 � p1 � p∗1.
We formally characterize the resulting impact of
imposing price fairness in Proposition 2.

Proposition 2. Let α̃p �min
( ����������

d0b1+d1b0
d1b0

√
b0−c
b1−b0 , 1

)
. If 0 ≤

α ≤ α̃p, then both the consumer surplus and the social

welfare increase with α. If α̃p < α ≤ 1, then p0(α) �
p1(α) � p∗1. In addition, the profit, consumer surplus, and social
welfare are lower relative to the case without price fairness (i.e.,
α � 0).

The impact of imposing price fairness admits two
separate cases.

a. When α ≤ α̃p, the change in consumer surplus is a
quadratic function that is increasing with α. The change
in welfare is a quadratic function that is concavely
increasing for any α ≤ α̃p. Thus, for any α ≤ α̃p (i.e.,
before giving up group 0), imposing additional price
fairness increases social welfare. Interestingly, both the
gain in social welfare and the loss in profit are concave
in α. This implies that the marginal effect of imposing
additional price fairness on social welfare (profit)
decreases (increases) with α. Consequently, imposing a
small amount of price fairness yields the highest mar-
ginal benefit on social welfare coupled with the lowest
profit loss. This insight can help persuade regulators
that incorporating a small amount of price fairness is
worthwhile.

b. When α > α̃p, it becomes optimal for the seller to
give up group 0 and set both prices at p∗1 > b0. This is
assuming that α̃p < 1 given that if α̃p ≥ 1, the second case
does not exist. Consequently, the profit and surplus from
group 0 are lost, so that it leads to a lose-lose outcome (i.e.,
lower seller’s profit and lower consumer surplus). In this
case, the social welfare drops belowW(0) for any α > α̃p.

In the top right of Figure 1, we consider a concrete
example and show how the profit, consumer surplus,
and social welfare vary as a function of α under price
fairness. An interesting implication of Proposition 2 is
the fact that the social welfare reaches its maximum
right before giving up group 0: that is, when α � α̃p (in
the example of Figure 1, α̃p � 0:22). The seller’s decision
to give up group 0 crucially depends on the value of����������

d0b1+d1b0
d1b0

√
b0−c
b1−b0. If it is less than on, then any α > α̃p leads

to a lose-lose outcome. The square root term,
����������
d0b1+d1b0

d1b0

√
,

depends on the relationship between d0b1 and d1b0 or
equivalently, d1=d0 and b1=b0. For example, when

d1=d0 � b1=b0, then
����������
d0b1+d1b0

d1b0

√
� ��

2
√

. On the other hand,

when d1=d0 � 100b1=b0, then
����������
d0b1+d1b0

d1b0

√
� ������

1:01
√

. The

higher d1=d0 is (for a fixed b0=b1), the more likely the
seller will give up group 0 when imposing fairness (i.e., it
will occur for a smaller value of α). This is consistent with
the intuition that when the high-valuation group (group
1) dominates the market, the seller is more likely to give
up the low-valuation group (group 0). Similarly, the term
(b0 − c)=(b1 − b0) conveys that the higher the difference
between both groups’ valuations is, the more likely the
seller is to give up group 0when imposing fairness, which
is also intuitive.
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To summarize, imposing price fairness increases
social welfare as long as α remains below α̃p. When
the differences in population size and in valuation
are significant, setting α to a large value may lead to

a lose-lose outcome. Furthermore, the value of α
needs to be carefully selected given that the maxi-
mum and minimum values of W(α) are right beside
each other.

Figure 1. Impact of Fairness Under Linear Demand
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3.2. Demand Fairness
We next consider the case of demand fairness. Recall
that F̄i(p∗i ) � (bi − c)=2bi, so that group 0 has lower
demand. Thus, as α increases, p0(α) decreases to raise
demand from group 0, whereas p1(α) increases to
reduce demand from group 1. We characterize the
impact of imposing demand fairness in Proposition 3.

Proposition 3. For demand fairness, the profit, consumer
surplus, and social welfare all decrease with α.

For demand fairness, the change in surplus is
always negative and reaches its minimum at α � 1.
Hence, the change in surplus is monotonically
decreasing for α ∈ [0, 1]. Consequently, the change in
social welfare is also monotonically decreasing, so
that any degree of demand fairness reduces social
welfare and leads to a lose-lose outcome.

3.3. Surplus Fairness
Recall that the surplus of group i is Si(pi) � (bi−pi)(1−pi=bi)

2
and that S0(p∗0) < S1(p∗1). Thus, as α starts to increase,
p0(α) decreases to raise the surplus from group 0, and
p1(α) increases to reduce the surplus from group 1.
The closed-form expressions for surplus fairness are
complicated because of the nonlinearity of the surplus
function. However, as we show in Proposition 4, the
social welfare is always belowW(0) for any α > 0.

Proposition 4. For surplus fairness,W(α) <W(0) for any
α ∈ (0, 1].

Hence, regardless of the value of α, imposing sur-
plus fairness always leads to lower social welfare rela-
tive to no fairness constraint.

3.4. No-Purchase Valuation Fairness
For no-purchase valuation fairness under linear
demand, we have Ni(pi) � pi=2. Therefore, for small
values of α, we obtain the same pattern as for price
fairness. However, when α becomes large, the price
dynamics under no-purchase valuation fairness fol-
low a different pattern. We formalize the impact of
no-purchase valuation fairness in Proposition 5.

Proposition 5. For no-purchase valuation fairness, both the
consumer surplus and the social welfare increase with α.

For no-purchase valuation fairness, the social wel-
fare always increases with α. When α is small, the
dynamics are the same as for price fairness. As in
price fairness, both the gain in social welfare and the
loss in profit are concave in α, so that imposing a small
amount of fairness yields the highest marginal benefit
on social welfare coupled with the lowest profit loss.
When α is large, however, instead of setting p1 � p0 �
p∗1 > b0 (so that the demand from group 0 is zero), the
seller has to lower p1 to reduce the gap in the
no-purchase valuation between both groups. Indeed, for

any p0 ≥ b0, the expected no-purchase valuation of
group 0 is equal to b0=2 and cannot be raised by increas-
ing p0. Thus, the only way to reduce the difference in
no-purchase valuations is to decrease p1, and hence, the
social welfare continues to increase (because the social
welfare is monotonically decreasing with price). As a
result, imposing additional no-purchase valuation fair-
ness always increases social welfare, even though group
0 may be given up (when p0 is set at b0). Interestingly,
for a large value of α, the only fairness definition that
yields a social welfare that is greater than W(0) is the
no-purchase valuation fairness. As a result, no-purchase
valuation fairness weakly dominates the other three fair-
ness metrics in terms of social welfare.

3.5. Summary and Discussion
We next summarize the results derived so far.

a. Under price fairness, the social welfare increases
with α and reaches its maximum at α � α̃p. It then
drops belowW(0) for any α > α̃p.

b. Under demand fairness, the social welfare decreases
with α—leading to a lose-lose outcome.

c. Under surplus fairness, the social welfare is always
below W(0)—leading to a worse outcome relative to
imposing no fairness.

d. Under no-purchase valuation fairness, the social
welfare always increases with α, but it is possible that
the demand of group 0 vanishes.

4. Extensions
In this section, we consider two extensions of our model
and show the robustness of our findings from Section 3.
In Section 4.1, we consider the case with n > 2 groups. In
Section 4.2, we study the case where there is an additional
feature Y that does not need to be protected.

4.1. Multiple Groups of Customers
We now assume that X is not binary and can take on N
values. We index the groups by 0, : : : ,N − 1 and assume
that group i has population di and parameter bi. With-
out loss of generality, we assume that b0 ≤ : : : ≤ bN−1.
The profit maximization Problem (1), with linear
demand, can be generalized as follows:

R(α) :� max
pi≥0

∑N−1

i�0
di(pi − c)max 0,1− pi

bi

{ }

s:t: |Mi(pi) −Mj(pj)| ≤ (1− α)
max

i,j∈{0,⋯,N−1}
|Mi(p∗i ) −Mj(p∗j )| ,

∀i, j ∈ {0, ⋯ ,N− 1}, (2)
where Mi is the fairness metric under consideration.
Although Problem (2) is easy to solve numerically (as
we will show in Lemma 2), its closed-form solution and
the impact on social welfare are difficult to characterize.
In particular, there are potentially many phase changes
in the optimal solution as α varies. However, by lever-
aging the structural properties of the linear demand, we
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can still derive managerial insights that turn out to be
similar to the two-group case studied in Section 3.

We start by investigating the cases of demand, sur-
plus, and no-purchase valuation fairness. Recall that
for the setting with two groups, Propositions 3–5
show that imposing fairness is either detrimental (for
demand or surplus fairness) or always beneficial (for
no-purchase valuation fairness) in terms of social wel-
fare. We next extend these results to the multigroup
case, as stated in Proposition 6.

Proposition 6. Consider any α ∈ (0, 1]. Then, the follow-
ing results hold.

a. For demand fairness, W(α) decreases monotonically
with α.

b. For surplus fairness,W(α) <W(0).
c. For no-purchase valuation fairness, W(α) increases

monotonically with α.

The proof for each part of Proposition 6 relies
on different arguments and machinery (see Online
Appendix C). For demand and no-purchase valuation
fairness, we first show that the prices pi(α) are mono-
tonic. We then show that the problem can be reduced to
an instance with two groups. For surplus fairness, we
also find a reduction to an instance of the problem with
two groups, but in this case, the social welfare of the
two-group instance does not match the social welfare of
the N-group problem. Instead, we leverage convexity
properties of several relevant functions to arrive at our
desired result. Ultimately, Proposition 6 shows that our
findings from Section 3 continue to hold for settings
with any finite number of customer groups.

We next consider the case of price fairness. Recall
that for the setting with two groups, Proposition 2
shows that for small values of α, the social welfare
increases with α. However, when α becomes large, it
may be optimal for the seller to give up a low-value

group. In a setting with more than two groups, the
impact of α on prices is more intricate relative to the
setting with two groups. In Figure 2, we present an
example with three groups. As α increases, the price
changes (left panel) admit four linear pieces, and the
social welfare function (right panel) includes two
drops. Nevertheless, we can still partially characterize
the impact on social welfare, as stated in Proposition 7
(the proof can be found in Online Appendix C).

Proposition 7. For price fairness, we have the following.
a. W ′(0) > 0: that is, imposing a small amount of price

fairness increases social welfare.
b. Suppose that all the groups have positive demand for all

α ∈ [0, 1] (i.e., F̄i(pi(α)) > 0); then, W(α) increases monot-
onically with α.

c. If there exists an α′ such that at least one group has zero
demand, then W(α′) may be either higher or lower than
W(0).

When α is small enough, Proposition 7(a) suggests
that a little price fairness still increases social welf-
are for any finite number of groups. As illustrated in
Figure 2, when α is relatively large, some groups may
be excluded by being offered high prices, thus leading
to potentially complicated patterns. Nevertheless, when
group exclusion does not happen, Proposition 7(b) con-
veys that the social welfare increases monotonically
with α. On the other hand, when group exclusion
does happen, the social welfare could either be higher
or be lower than the unconstrained social welfare per
Proposition 7(c), which is different from the two-group
setting where group exclusion always leads to a lower
welfare.

To summarize, for demand, surplus, or no-purchase
valuation fairness, we find that our insights from the
two-group setting generalize for multiple groups. For
price fairness, even though the prices follow a more

Figure 2. Prices (Left Panel) and Profit, Surplus, andWelfare (Right Panel) Under Price Fairness
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complex pattern, we still find that a little price fairness
is always beneficial in terms of social welfare.

4.2. Adding an Unprotected Feature
In practice, it is possible that a subset of the features is
unprotected, so that the seller is allowed to discrimi-
nate freely based on such features (e.g., loyalty status,
purchase history, country). For simplicity, we con-
sider the case of two observable features: a binary
(protected) feature X � {0, 1} on which we would like
to impose fairness and a binary unprotected feature
Y � {0, 1}. This gives rise to four groups of customers.
We use the subscript xy to denote a specific group; for
example, d00 is the population of group (X � 0,Y � 0),
and p10 is the price offered to group (X � 1,Y � 0).

When adding an unprotected feature, our fairness
definitions from Section 2 need to be revisited. We pro-
pose two refined versions for each fairness definition:
conditional fairness and weighted average fairness. For
example, consider the price fairness definition. The con-
ditional α-fairness is defined such that for any value of Y,
the price difference between the group with X � 0 and
the group with X � 1 is small:

|p0y − p1y | ≤ (1 − α) |p∗0y − p∗1y | , ∀y � 0, 1:

The weighted average α-fairness is defined such that
the weighted average prices (with respect to popula-
tion sizes) for X � 0 and X � 1 are close together: that
is,

| p̄0 − p̄1| ≤ (1 − α) | p̄∗0 − p̄∗1| ,
where p̄i � di0pi0+di1pi1

di0+di1 for i � 0, 1. The same refinements
extend to the other fairness definitions.

For conditional fairness, the problem separates in two
parallel subproblems for each value ofY. Each subproblem
has two groups, so that the results from Sections 3.1–3.4
naturally apply. On the other hand, the weighted average
fairness cannot be solved using the same approach. Specif-
ically, the pricing problem faced by the seller becomes

R(α) :� max
p00,p01,p10,p11

R00(p00) + R01(p01) + R10(p10) + R11(p11)

s:t: |M̄0 − M̄1 | ≤ (1 − α) |M̄0∗ − M̄∗
1| , (3)

where R(α) denotes the total optimal profit as a func-
tion of α, M̄i � di0Mi0(pi0)+di1Mi1(pi1)

di0+di1 is the weighted average

measure of group i with respect to Y, and M̄∗
i is the

weighted average measure of group i under the optimal
prices when the problem is unconstrained (i.e., no fairness
constraints). For convenience, we denote pxy(α) the opti-
mal prices to Problem (3) as a function of α. Note that
R(α) � R00(p00(α)) +R01(p01(α)) +R10(p10(α)) +R11(p11(α)).
For simplicity of exposition, we focus on the situation
where all the groups have positive prices and demand
(i.e., pxy(α) ∈ (0,bxy)). Proposition 8 shows that our insights

from Sections 3.1–3.4 still hold under weighted average
fairness (the proof is in Online Appendix D).

Proposition 8. Assume that the demand is linear so that
the valuations for a group xy are uniform between zero and
bxy, where x,y ∈ {0, 1}. For all α such that pxy(α) ∈ (0,bxy)
and for any x,y ∈ {0, 1}, the following holds for weighted
average α-fairness.

a. For price fairness,W(α) increases with α.
b. For demand fairness,W(α) decreases with α.
c. For surplus fairness,W′(0) < 0.
d. For no-purchase valuation fairness, W(α) increases

with α.

Proposition 8 shows that all the qualitative results
from Sections 3.1–3.4 still hold for weighted average
fairness (with the exception of surplus fairness for
which we now have a slightly weaker claim). Specifi-
cally, for small values of α such that pxy(α) ∈ (0,bxy),
imposing additional price or no-purchase valuation
fairness increases social welfare. On the other hand,
imposing demand or surplus fairness has a negative
impact on social welfare. Interestingly, conditional
fairness and weighted average fairness may lead to
different directions of price changes (even under the
same fairness metric), but the impact on social welfare
is similar. For example, if d00 � 0:9,d01 � 0:1,d10 �
0:1,d11 � 0:9 and b00 � 1,b01 � 2,b10 � 4,b11 � 3, then
under conditional price fairness, p01 decreases and p11
increases as b01 > b11. However, for weighted average
price fairness, we have p̄0 � 1:3 and p̄1 � 2:9, so that
p̄0 < p̄1. In this case, p01 increases and p11 decreases
with α. Although the direction of price changes is dif-
ferent, surprisingly both types of price fairness
increase social welfare.

Finally, we consider a scenario where the seller may
not be able to (or may not want to) price discriminate
based on the protected feature, implying that p0y �
p1y. Meanwhile, the fairness is still measured based on
the difference between M̄0 and M̄1, which is in gen-
eral nonzero. In other words, the seller optimizes pri-
ces based only on the unprotected feature Y, whereas
the fairness is imposed with respect to the protected
feature X. This corresponds to solving Problem (3)
with an added price constraint. In this case, one can
easily verify that our result in Proposition 8(a) still
holds for price fairness. However, for the other fair-
ness definitions, the social welfare can increase or
decrease. In fact, Example 2 describes an instance
where it is not possible to improve demand fairness at
all in this setting.

Example 2. Let d00 � 0:5,d01 � 0:5,d10 � 0:6,d11 � 0:4
and b00 � 1,b01 � 3,b10 � 1:2,b11 � 2:4. Suppose that the
seller maximizes profit subject to the constraint
p0y � p1y. Then, the optimal prices are p00 � p10 � 0:65
and p01 � p11 � 1:45. The resulting weighted average
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demand for groups X � 0 and X � 1 are 0.417 and
0.567, respectively. We next seek to impose demand
fairness across both groups. When we vary p00 � p10
by any Δp00, the weighted average demand for both
groups will change by −0:5Δp00. Similarly, when we
vary p01 � p11 by any Δp01, the weighted average
demand for both groups will change by −0:167Δp01.
Namely, in both cases, no matter how we vary the pri-
ces, the difference in weighted average demand will
remain the same. Thus, it is impossible to reduce the
demand difference across groups (unless the demands
of groups are set to zero).

5. Computations for Nonlinear
Demand Functions

In this section, we investigate computationally the
impact of fairness for alternate demand functions.
Specifically, we consider the following three demand
models: exponential, logistic, and log-log. We report
the expressions of the demand F̄i(p), consumer sur-
plus Si(p), and mean valuation E[Vi] in Table 1. Note
that we made a slight adjustment to the log-log
demand function to ensure that it fits into the random
utility framework.8

5.1. Setting with Two Groups
We first consider the problem with two groups of cus-
tomers. We find the optimal pricing strategy by
searching for the optimal F̄i(p) between zero and one
using 10−4 increments. For the log-log demand, it is
possible that the market share reaches one, which cor-
responds to any price between zero and ai. In this
case, we also search for the optimal pi between zero
and ai. We report the results for one representative
instance of the logistic demand in Figure 3 (see Fig-
ures A.4 and A.5 in Online Appendix F for the expo-
nential and log-log demand functions). Specifically,
we show how the prices evolve as a function of α (left
panels) as well as the profit, consumer surplus, and
social welfare (right panels). We also list all the tested
instances in Online Appendix F.1.

By conducting extensive computational tests, we
find that imposing each of the four types of fairness
constraints yields similar insights as in the case of lin-
ear demand. For exponential and logistic demand, we
observe that under either price or no-purchase valua-
tion fairness, the social welfare first increases as a

function of α, whereas for either demand or surplus
fairness, the social welfare decreases monotonically
with α.

Under price fairness, it is still possible that p1
changes nonmonotonically with α (see the top left
panel of Figure 3) and that group 0 is (approximately)
excluded by setting both prices close to p∗1 (with nearly
zero demand from group 0). As we have shown in
Section 3, such cases occur when the population of the
high-valuation group is large. As a result, under price
fairness, we retrieve the result that the social welfare
first increases with α and then decreases. A major dif-
ference between the linear demand and the nonlinear
models considered in this section emerges from the
no-purchase valuation fairness. More specifically,
the social welfare is not always increasing as it was
the case for linear demand. Thus, under price or
no-purchase valuation fairness, even though a small
value of α increases social welfare, the specific value
of α needs to be carefully selected.

5.2. Setting with Multiple Groups
We next test the performance of the nonlinear
demand models when there are n > 2 groups of cus-
tomers. Because Problem (2) is nonconvex and there
are N decision variables, using a search heuristic can
be burdensome. Interestingly, by exploiting the struc-
ture of the problem, we find that the optimal solution
can be found efficiently by reducing the N-group pric-
ing Problem (2) to a one-dimensional optimization
problem. We leave the detailed discussion in Online
Appendix E.

We next discuss the results for 20 randomly gener-
ated instances with n � 5 groups. Representative fig-
ures and the details of the instances are reported in
Online Appendix F.2. Although the way the prices
vary with α is more intricate than before, most of the
analytical results we derived for the case of linear
demand still hold (computationally) for the nonlinear
demand models we considered. For all demand mod-
els, imposing price fairness is always beneficial at first.
However, increasing the level of price fairness too
much may prompt the seller to exclude low-value
groups via a price surge and thus, can lead to a lose-
lose outcome. For demand fairness, we observe that it
always reduces social welfare under exponential and
logistic demands, but for log-log demand, it can go

Table 1. Demand, Surplus, and Mean Valuation for the Different Demand Models

Demand model/metric F̄i(p) Si(p) E[Vi]
Exponential e−λip 1

λi
e−λip 1

λi

Logistic kie−λi p
1+kie−λi p

1
λi
log (1+ kie−λip) 1

λi
log (1+ ki)

Log-log min ai
p

( )βi
, 1

{ }
βi

βi−1 ai(F̄i(p))1−1=βi − pF̄i(p) βi
βi−1 ai
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either way as in the two-group case. Imposing a small
amount of surplus fairness decreases social welfare
for all demand models. Finally, imposing no-purchase
valuation fairness increases social welfare when α ini-
tially increases from zero under exponential and logis-
tic demand. Under log-log demand, the social welfare
may go either direction just as in the two-group case.
Such findings increase our confidence that our mana-
gerial insights are robust and continue to hold for
nonlinear demand models.

6. Conclusion
As discussed in Lobel (2021), although price discrimi-
nation has become common practice, it raises impor-
tant questions in terms of fairness, which have been
mostly unexplored. This paper offers a first step in
understanding fairness in the context of pricing. We
propose four possible fairness definitions—fairness in
price, demand, consumer surplus, and no-purchase
valuation—and investigate the impact of imposing
fairness constraints on social welfare. We first show

Figure 3. Impact of Fairness Under Logistic Demand (Two Groups)
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that imposing simultaneously several fairness metrics
is generally impossible, hence reflecting the complex-
ity of achieving perfect fairness in reality. We then
focus on each fairness metric separately and character-
ize the optimal solutions in closed form under a linear
demand model. We show that imposing a small
amount of price fairness increases social welfare but
that imposing too much price fairness may lead to a
lose-lose outcome (i.e., both the seller and the consum-
ers are worse off). Imposing either demand or surplus
fairness always reduces the social welfare. Finally,
imposing no-purchase valuation fairness increases the
social welfare monotonically with the fairness level.
Our findings also persist for a general setting with
more than two customer groups, and most of our
results hold computationally for three nonlinear
demand models. Our insights have the potential to
inform regulatory entities that are concerned with
imposing fairness constraints on pricing.

Admittedly, much more research needs to be done
on this topic. First, incorporating these fairness defini-
tions into algorithms is an interesting avenue for
future research and can potentially have great practi-
cal impact. Second, one can consider the role of inven-
tory or capacity constraints in this setting, which may
potentially evolve over time. Given the extensive
research on fairness related to resource allocation, it
would be interesting to develop a combined frame-
work for fairness in both inventory allocation and pric-
ing, which might require a different notion of surplus
(Cohen et al. 2017). Another interesting extension of our
model would be to consider pricing decisions that can
only be made with partial information, such as the mean
and variance of customer valuations (Chen et al. 2022).
We also recognize that there might be competition
between multiple sellers, another dimension that is
unexplored in this paper. Finally, running behavioral
surveys to learn how the different fairness definitions
are perceived by consumers will help better understand
how to properly define a fair pricing policy.
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Endnotes
1 Bostock v. Clayton County was decided on June 15, 2020.
2 See https://www.natlawreview.com/article/new-york-implements-pink-
tax-ban.
3 See https://www.huffpost.com/entry/pink-tax-examples_l_5d24da77
e4b0583e482850f0.

4 See https://www.ftc.gov/news-events/blogs/business-blog/2020/04/
using-artificial-intelligence-algorithms.
5 See https://www.hud.gov/sites/documents/FAIR_LENDING_
GUIDE.PDF.
6 We highlight that the calligraphic quantities R(·), S(·), and W(·)
denote functions of α, whereas R(·), S(·), andW(·) denote functions of p.
7 The social welfare (right) derivative at α � 0 is defined as W′(0) �
limα→0+

W(α)−W(0)
α .

8 The common form of the log-log demand is p � aiq−1=βi , where q is
the demand and βi is the price elasticity. Because the demand goes
to infinity when the price approaches zero, we truncate the demand

at one: that is, we impose F̄i(p) �min ai
p

( )βi
, 1

{ }
: We also require that

ai(βi − 1) < cβi, so that F̄i(p∗i ) < 1 (otherwise, all the customers are
buying, hence leading to an unrealistic situation).
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