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Abstract. Problem definition: The recent ubiquity of social networks allows firms to collect
vast amount of data on their customers and on their social interactions. We consider
a setting in which a monopolist sells an indivisible good to consumers who are embedded
in a social network. Academic/practical relevance: This is an important problem as sellers
can use available data to design and send targeted promotions that account for social exter-
nality effects and ultimately increase their profits.Methodology: We capture the interactions
among consumers using a broad class of nonlinear utility models. This class extends the
existing models by explicitly capturing externalities from subsets of agents (communities
or groups) and includes several existing models as special cases (e.g., full information
version of the triggering model). Assuming complete information about the interactions,
we model the optimal pricing problem as a two-stage game. First, the firm designs prices
to maximize profits and then consumers choose whether to purchase the item.Results: Under
positive network externalities, we show the existence of a pure Nash equilibrium that is
preferred by both the seller and the buyers. Using duality theory and integer-programming
techniques, we reformulate the problem into a linear mixed-integer program (MIP). We
derive efficient ways to optimally solve the MIP using its linear-programming relaxation
for two pricing strategies: discriminative and uniform. Finally, we propose two intuitive
heuristic algorithms to solve the problem for which we derive worst-case parametric
performance bounds. Managerial implications: We draw interesting insights on the
structure of the optimal prices and the seller’s profit. In particular, we quantify the effect
on prices when using a nonlinear utility model relative to a linear model and identify
settings with which it is beneficial to offer a price below cost to influential agents. Finally,
we extend our model and results to the case in which the seller offers incentives (in
addition to prices) to solicit actions so as to ensure network externality effects.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2018.0738.
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1. Introduction
The recent ubiquity of social networks has revolu-
tionized the way people interact and influence each
other. The overwhelming success of social-networking
platforms, such as Facebook and Twitter, allows firms
to collect unprecedented volumes of data on their
customers, their buying behavior, and their social in-
teractions. The challenge faced by every firm is how to
process this data and turn it into actionable policies to
improve their competitive advantage. In this paper, we
focus on designing effective pricing strategies to en-
hance the profits of a firm that sells indivisible goods
(or services) to agents embedded in a social network.

Word-of-mouth communication between agents has
always been an effective marketing tool. In recent
times, word-of-mouth communication is just as likely
to arise from social networks as from a neighbor across
the fence. Consultants at The Conversation Group report
that 65% of consumers who receive a recommendation

from a contact on their social media have purchased the
recommended product. In particular, personalized re-
ferrals from friends and family have been more effective
in encouraging such purchases. Further, nearly 93% of
social media users have either made or received a rec-
ommendation for a product or service. Academic re-
search on consumer behavior shows that consumers’
purchasing decisions are influenced by their reference
groups (see, e.g., Iyengar et al. 2011). The previous
examples clearly indicate that people influence their
connections. They not only guide their purchasing be-
havior, but more importantly, alter their willingness to
pay for various items. For example, when an individual
buys a product and posts a positive review on the in-
dividual’s Facebook or Yelp page, the individual does
influence the individual’s peers to purchase the same
item and increases its valuation. The valuation in-
crease can sometimes be nonlinear. For example, ifmany
other people have already recommended this item, the
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marginal effect of a new recommender can have a rel-
atively small increase. Alternatively, sometimes having
a single friend who buys and recommends the item
may be sufficient to trigger a significant increase in
valuation.

An important feature of the products or services we
consider in this paper is the local (nonlinear) positive
externalities. This means that people positively influ-
ence each other’s willingness to pay for an item (the
setting with negative externalities is briefly discussed
in Section 6.2). In addition, the item becomes more
valuable to a person if many of the person’s friends buy
it even though there can be a decreasing (or increasing)
marginal effect (submodular or supermodular). Ex-
amples of products with such effects include smart-
phones, tablets, fashion items, and cell phone plan
subscriptions. Such positive externalities may be even
more significant when a new generation of products is
introduced to the market and people use social net-
works as a way to accelerate their friends’ awareness
about the item.

It is common practice that a very small number of
highly influential people (e.g., certified bloggers) re-
ceive the item nearly for free to increase the awareness
of the remaining population. Mark W. Schaefer (2012),
the author of Return on Influence, reports, “For the first
time, companies large and small can find these pas-
sionate influencers (using social networks), connect to
them, and turn them into brand advocates.“ Therefore,
it can be valuable for firms to identify these influential
agents. As an example, many online sellers let con-
sumers sign in with their Facebook account. Conse-
quently, they have access to their personal information
such as age, gender, geographical location, and number
of friends as well as, more importantly, their network.
Various sellers even build a Facebook page to advertise
their firm through social platforms. For example, the
large U.S. corporation Macy’s has more than 14.68
million fans who liked its Facebook page (February
2018). These fans can claim offers via the social platform
and, thus, directly influence their friends about pur-
chasing. This interaction between the seller and the fan
club allows the seller to keep its fan club engaged and
to identify influencers. Ultimately, the seller can offer
personalized prices or incentives to these influencers to
increase the overall profitability.

In this paper, our goal is to develop a model that
incorporates local nonlinear externalities among po-
tential buyers and design efficient algorithms to
compute the optimal prices that maximize the seller’s
profit. We formulate the optimal pricing problem as
a two-stage game between the seller and the agents in
the network in which the seller first offers prices and
the agents then choose whether to purchase the (in-
divisible) item. The main contributions of the paper are
as follows:

(1) Nonlinear additive utility models with exter-
nalities: We introduce and study a class of additive
utility models. This class extends existing models by
explicitly capturing externalities from subsets of buyers
(communities or groups) and allowing a threshold on
the number of agents needed to trigger the externality
effect. Several commonly used models in the literature
are included as special cases under full information
(e.g., independent cascade model, linear threshold, and
triggering model). In particular, the total value earned
by an agent when purchasing the item is the sum of the
agent’s own valuation and the valuation derived from
externalities of all subsets of friends (see Section 2.1).
This is a broad class of nonlinear utility functions that
can capture different influence structures, including
special cases of supermodular and submodular, with
respect to the number of neighbors.

(2) Reformulating the optimal pricing problem
into an operational mixed-integer program (MIP). The
strategic-complements nature of the second-stage game
guarantees the existence of a pure strategy Nash equi-
librium (under nonnegative externalities). Using duality
theory, we derive equilibrium constraints and refor-
mulate the two-stage problem into a nonconvex-integer
program. We then transform it into an equivalent MIP
using integer programming reformulation techniques.
This resulting MIP holds under general externalities
(positive or negative) and can be viewed as an opera-
tional pricing tool with which one can easily incorporate
business rules on prices.

(3) Efficient optimal algorithms for discriminative
and uniform pricing strategies. We develop efficient
and scalable methods to optimally solve the MIP for
two pricing strategies using the linear programming
(LP) relaxation. We consider discriminative and uni-
form pricing strategies and present a solution method
that is efficient (polynomial in the number of agents)
and scalable to large networks. We also propose two
heuristic algorithms (the greedy expansion and the greedy
removal) that are intuitive and easy to implement, and
we derive parametric bounds on their worst-case per-
formance under nonnegative externalities.

(4) Insights on the structure of the optimal pricing
strategy. Under discriminative prices, we show that the
price of a buyer can be expressed as the sum of the
buyer’s own value and a markup term corresponding
to the network externalities of agents who buy the item.
Therefore, prices for influenced agents are higher (as
expected). The seller’s profit from network externalities
comes from two types of agents: (1) high-valued cus-
tomers who influence their neighbors and (2) low-
valued customers who are highly influential and can
sometimes be offered a price below cost. In addition,
when comparing linear to nonlinear utility models, we
show that, as we move from a linear model (with only
pairwise interactions) to a nonlinear one (that includes
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subsets of higher sizes), additional agents will buy,
buyers will pay a higher price, and the profit increases.
We also convey that a larger threshold on theminimum
number of agents results in a smaller number of buyers
and decreases the seller’s profit.

(5) Price incentives that guarantee influence. We
extend our model and results to optimally design both
prices and incentives to solicit actions so as to ensure
externality effects. This new model we introduce is
more realistic and allows the seller to ensure that
network externalities among agents occur by offering
both a price and a discount (incentive) to each buyer.
The buyer can then decide between (1) not buying the
item, (2) buying the item at full price, and (3) buying the
item while claiming the discount in exchange for in-
fluence actions specified by the seller (e.g., liking the
product on social media or writing a review). In-
terestingly, the methods and results we develop extend
to this richer model.

1.1. Literature Review
Models that incorporate local network externalities
find their origins in papers by Farrell and Saloner
(1985) and Katz and Shapiro (1985). These early papers
assume that consumers are affected by the global
consumption of all other consumers. In other words,
the network effects are of a global nature; that is, the
utility of a consumer depends directly on the behavior
of the entire set of agents in the network. In our model,
consumers only interact with a subset of agents, also
known as their neighbors (or friends). Although in-
teractions are of a local nature, the utility of each player
may still depend on the global structure of the network
given that each agent potentially interacts indirectly
with a much larger set of agents. Models of local
network externalities that explicitly account for the
network structure have been proposed in various pa-
pers (e.g., Ballester et al. 2006 and Banerji and Dutta
2009). Several recent papers explicitly model the in-
teractions among agents in social networks to study the
network effects on marketing campaigns. The first
among these are the papers on influence maximization
(i.e., selecting the optimal set of nodes in a social
network to maximize the spread) by Domingos and
Richardson (2001) and Kempe et al. (2003), which
aimed to identify influential agents in a network.
Hartline et al. (2008), Akhlaghpour et al. (2010), and
Arthur et al. (2009) extend this line of work to study
optimal pricing strategies in networks. Hartline et al.
(2008) focus on viral marketing strategies for revenue
maximization in which agents are offered the product
in a sequential manner and show that simple two-price
strategies perform well relative to the optimal strategy,
which is NP-hard. Akhlaghpour et al. (2010) extend this
approach to a multistage model in which the seller sets
different prices at each stage. Arthur et al. (2009) allow

agents to buy the product with a certain probability if
the product is recommended by their friends who
purchased the item. These papers consider sequential
purchases in which myopic consumers base their
consumption decisions on the number of consumers
who have already bought the product. In our paper,
however, we consider a simultaneous purchasing de-
cision for all agents in the network who are fully ra-
tional. Since the seminal work of Kempe et al. (2003) on
the influence-maximization problem, several papers
followed up on this topic. In Chen et al. (2010), the
authors propose a new heuristic algorithm that is easily
scalable to millions of nodes. The work in Borodin et al.
(2010) extends the influence maximization problem
to a competitive setting. The authors show that the
problem becomes more challenging and that greedy
approaches cannot be used anymore. Another recent
paper is the work by Gunnec and Raghavan (2017) that
investigates social network influence in the context
of product design (share-of-choice problem). Finally,
Nakkas and Xu (2015) study bargaining in two-sided
supply chain networks and examine how valuation het-
erogeneity among manufacturers influences the equilib-
rium prices and the trading pattern of the supply chain
network.
Our paper is also related to several studies in the

marketing literature, especially in the field of social
marketing (see, e.g., Andreasen 1994). Since the in-
troduction of the Bass model, the diffusion of in-
novation has been an active area of research (see, e.g.,
Mahajan et al. 1991 and the references therein). This
model assumes that potential adopters of an innovative
product are influenced by mass media (called “in-
novators”) and word of mouth (called “imitators”).
A large number of marketing papers conduct empirical
studies on the impact of word of mouth in the context
of social networks (see, e.g., Goldenberg et al. 2001).
Another stream of papers (both in economics and
marketing) study models with indirect network effects
(INE), which postulate that the utility of the primary
product increases as more complements become avail-
able. Stremersch et al. (2007) provide a good marketing
literature review on this topic. In Basu et al. (2003), the
authors consider a model in which the utility of a
product increases with the greater availability of com-
plementary products and show that the INE can vary by
product attributes. More recently, Lovett et al. (2013)
present an empirical analysis on the relationship be-
tween brands and word of mouth. The authors argue
that consumers spread the word on brands as a result of
three drivers: social, emotional, and functional. Finally,
several marketing and information systems papers
consider the problem of running field experiments to
identify causal estimates of social influence in networks
or to asses the effectiveness of viral features inmarketing
campaigns (see, e.g., Aral and Walker 2011).
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We model the pricing problem with simultaneous
purchasing decisions as a two-stage game, in which the
seller first sets the prices and then agents make their
purchasing decisions. Rational behavior is captured by
the Nash equilibrium. Three papers in this context are
closely related to our work. Candogan et al. (2012)
study optimal pricing strategies for a divisible good
with linear utility functions under complete network
information. The authors provide efficient algorithms
to compute discriminative prices and the uniform
optimal price and to show that the problem is NP-hard
when the monopolist is restricted to two prespecified
prices. Bloch and Querou (2013) and Chen et al. (2011)
study the optimal pricing problem of an indivisible
good with linear utility functions under incomplete
information. Our work is in a similar light as the three
aforementioned papers. In particular, we study the
optimal pricing problem for indivisible items under a
general class of nonlinear network externality models.
The class of models we propose can be seen as a de-
terministic generalization (because of the perfect in-
formation assumption) of previous utility models (e.g.,
the independent cascade in Kempe et al. 2003 and the
triggering model in Seeman and Singer 2013) and can
capture submodular and supermodular functions. Our
models allow explicitly capturing externalities of sub-
sets of agents (communities or groups) and a threshold
on the number of agents needed to trigger the exter-
nality effect. In addition, the techniques required to
address the pricing problem under general utility
models differ significantly from earlier papers. In par-
ticular, one cannot derive a closed-form solution for the
optimal pricing problem as in Candogan et al. (2012)
and Bloch and Querou (2013). Instead, the equilibrium
in our setting can be characterized by a system of
nonconvex constraints with integer variables. We use
techniques from integer programming (IP) to refor-
mulate the optimal pricing problem with the equilib-
rium constraints into a linear MIP. We refer the reader
to the books by Nemhauser and Wolsey (1988) and
Bertsimas and Weismantel (2005) for the IP techniques
used in this paper.

1.2. Structure of the Paper
In Section 2, we describe our model, assumptions, and
dynamics of the two-stage game. In Section 3, we show
the existence of a pure strategy Nash equilibrium for
the purchasing game (under nonnegative externalities).
We use duality theory to formulate the problem as
an MIP in Section 4 and derive efficient algorithms to
optimally solve it for discriminative and uniform
pricing strategies in Section 5. In Section 6, we propose
two heuristic algorithms and discuss the setting with
general externalities (positive or negative). Section 7
extends our results to the case in which the seller de-
signs both prices and incentives to guarantee network

externality effects. In Section 8, we present computa-
tional experiments. Finally, our conclusions are reported
in Section 9. The proofs of the technical results are rel-
egated to the online appendix.

2. Problem Setting
2.1. Utility Model with Network Externalities
Consider a monopolist selling an indivisible product to
N agents, denoted by the set ( � {1, . . . ,N}, embedded
in a social network. We denote the set of value in-
teractions of agent i∈( by Gi � {gS,i | S⊂(\{i}}, where
the element gS,i represents the marginal increase in
value that agent i obtains by owning the product when
agents in S influence the agent.1 This excludes the
network effects resulting from subsets of S, each of
which is modeled explicitly. Concrete examples are
presented in the sequel. Note that the network con-
sidered in this paper can be represented as a weighted
bipartite graph, G((,Δ(,E), where ( denotes the set of
agents, Δ( corresponds to the set of subsets of (, and E
represents the links between the groups so that the
weight of a link determines the externality effect from
one subset to an agent. We next define the threshold
Γ≥ 1. For any set S, a minimum number of min{Γ, |S|}
buyers in S are required to influence agent i. Here |.|
refers to the cardinality of a set. The term g∅,i (also
denoted by gi) is the marginal value that agent i derives
by owning the product. If agent j does not influence
agent i, then all terms gS,i where j∈ S are zero. On the
other hand, if agent j influences agent i, then at least one
of the terms gS,i where j∈ S is nonzero. In this case, we
refer to j as a neighbor (or friend) of i.

Assumption 1. We make the following assumptions re-
garding the elements of Gi ∀i∈( and the corresponding
utility model.

(1) The firm and the agents have perfect knowledge on
externalities; that is, everyone knows Gi.

(2) Positive externality: The network externality of any
set S on any agent i is nonnegative. That is, gS,i ≥ 0 for any
S⊂(\{i} and i∈(.

(3) Additive model: The total value earned by an agent
when purchasing the item is the sum of the agent’s own
valuation and the valuation derived from the network ex-
ternalities of all subsets of friends who own the item.
Mathematically, agent i’s valuation is given by

vi(αi,α−i) � αi

[ ∑
S⊂(\{i}

gS,iαS

]
, (1)

where αi ∈ {0, 1} is a binary variable that represents the
purchasing decision of agent i, α−i represents the vector of
purchasing decisions of all agents but i, and αS is a binary
function that maps the purchasing decisions of agents in S to
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a binary indicator which is one if agents in S influence i and
zero otherwise. More specifically, we have

αS � max
S′⊂S

|S′ |�min{Γ,|S|}

{
∏
j∈S′

αj

}
. (2)

Equation (2) captures the fact that agents in S influence i
if at least Γ of them purchase the product. Note that we
consider a setting with perfect information to make the
analysis tractable and to draw some insights on our
problem. This is a common assumption in several pre-
vious papers, such as Candogan et al. (2012). The positive
externality assumption is also a commonly used condi-
tion that allows ensuring the existence of an equilibrium
as we show in Theorem 1. The setting in which exter-
nalities can be negative is discussed in Section 6.2.

The additive model in Equation (1) together with
Equation (2) capture a broad class of linear and non-
linear utility models with network externalities. In
particular, it can be seen as a deterministic general-
ization (because of the perfect information assumption)
of the independent cascade and the linear thresh-
old models formulated in Kempe et al. (2003) and the
triggering model studied in Seeman and Singer (2013).
The triggering model generalizes the former two
models by considering that agent i is influenced by
a subset of its neighbors, S (called a trigger set), if any of
the agents in S purchases the product. Note that this is
a special case of our model when Γ � 1. For a general
value of Γ, our model can be viewed as a subset trig-
gering model. More precisely, agent i is influenced by
its neighbors who belong to the trigger set S if at least Γ
of them purchase the item. We next present several
examples from this class of models that capture linear
and nonlinear effects.

(1) Pairwise externality: Suppose gS,i � 0 for all
subsets |S| > 1 and gi, gj,i ≥ 0∀i, j∈( with Γ � 1. More
specifically, we have

vi(αi,α−i) � αi

[
gi +

∑
j∈(\{i}

αjgj,i
]
. (3)

This case corresponds to a weighted bipartite graph
G((,Δ(,E) with Δ( � (. This valuation function cap-
tures only the marginal externality of each neighbor
and is linear and additive across neighbors. This type of
model has been the focus of several earlier papers, such
as Candogan et al. (2012), Bloch and Querou (2013),
and Chen et al. (2011).

(2) Triple-wise externality: Suppose gS,i � 0 for all
subsets |S| > 2 and gi, gj,i, g{ j,k},i ≥ 0∀i, j, k ∈(. In par-
ticular, we have

vi(αi,α−i) � αi

[
gi +

∑
j∈(\{i}

αjgj,i +
∑

j,k∈(\{i}; j≠k
αj,kg{j,k},i

]
.

(4)

In addition, we can have either of the following: (1) if
Γ � 1, αj,k � max{αj,αk}; (2) if Γ � 2, αj,k � αjαk. This
valuation function is a special case of a supermodular
utility model, in which the marginal effect of an ad-
ditional neighbor increases with the set of existing
influencers. Observe that these effects are characterized
by externality terms that do not decompose by agents
and are, hence, nonlinear with respect to subsets of
neighbors.

Observe that, in this model, the externality effects of
each subset is modeled separately. For example, consider
a small network with three agents and Γ � 2, and suppose
that all three agents decide to buy the item. The total
network externalities of agents 2 and 3 on agent 1 are
given by g2,1+ g3,1+ g{2,3},1. The first two terms correspond
to the pairwise effects (i.e., how agent j affects agent i on
agent j’s own), whereas the term g{2,3},1 represents the ad-
ditional externality of agents 2 and 3 together on agent 1.
In particular, g{2,3},1 does not incorporate the impact of its
subsets (g2,1 and g3,1). The weighted bipartite graph
G((,Δ(,E) for this example can be found in Figure A.1 (see
Online Appendix A).

(3) Complete neighborhood triggering model: Sup-
pose gS,i � 0 for all S⊂(\{i} except a single set 1i,
which represents all the neighbors of i.

vi(αi,α−i) � αig1i ,i max
S′⊂1i

|S′ |�min{Γ,|1i |}

{
∏
j∈S′

αj

}
.

In this model, an agent is influenced if and only if at
least Γ of the agent’s neighbors buy the item. By taking
Γ � 1, we obtain a special case of a submodular influ-
ence model, in which only the first purchasing neighbor
triggers an externality effect (and thereafter, the function
does not increase with the number of purchasing
neighbors). For other values of Γ, the function is
neither submodular nor supermodular.

2.2. Pricing and Purchasing Model
Let the vector p ∈P denote the prices offered by the
seller to all the agents. In particular, pi ∈R+ represents
the price offered to agent i. Here, P is assumed to be
a polyhedral set that represents the feasible pricing
strategies, which possibly includes several business
constraints. For example, the firm can adopt a dis-
criminative pricing strategy in which each agent may
potentially receive a different price; that is, P � RN+ . In
addition, one can restrict the values of these prices to
lie between pL and pU > pL; that is, P � {p ∈RN+ |pL ≤
pi ≤ pU ∀i}. A common pricing strategy is to adopt a
single uniform price for all agents across the net-
work. Here, P � {p ∈RN+ | pi � p̄ ∀i, p̄∈R+}. Depending
on the context, the firm can select appropriate business
constraints on the pricing strategy. Finally, P can also
incorporate specific constraints on network segmenta-
tion. For example, motivated by business practices, a
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particular segment of agents should be offered the
same price. Alternatively, special members (e.g., loyal
customers) should receive a lower price than regular
customers.

Our goal is to develop a general and efficient optimal
pricing method. For a given set of prices chosen by the
seller, the agents in the network simultaneously choose
their actions to maximize their utility (i.e., we con-
sider a simultaneous game). We assume that the util-
ity model of an agent is the total value minus the price:

ui
(
αi,α−i, pi

) � vi(αi,α−i) − αipi � αi

[ ∑
S⊂(\{i}

gS,iαS − pi
]
.

(5)

If αi � 1, agent i purchases the item and derives a
utility equal to

∑
S⊂(\{i} gS,iαS − pi, and if αi � 0, the

agent does not purchase the item and derives zero
utility. Each agent can buy at most one unit of the item
and either fully purchases the item or does not pur-
chase it at all.

Each agent is assumed to be rational and a utility
maximizer. The utility-maximization problem of agent
i can be written as follows:

max
αi∈{0,1}

ui
(
αi,α−i, pi

)
. (6)

If the utility of an agent is exactly zero, the tie is broken,
assuming this agent buys the item.

We assume that the seller is a profit maximizer with
a linear manufacturing cost. The seller’s problem is
given by

max
p∈P

∑
i∈(

αi (pi − c), (7)

where the vector α represents the purchasing decisions
of the agents obtained fromproblem (6) and c is the unit
manufacturing cost. If agent i decides to buy the
product at the offered price pi, αi is equal to one and the
seller earns a profit of pi − c. If agent i decides not to
purchase the item, it incurs zero profit to the seller. The
profit is denoted by Π.

We view the entire problem, called the pricing–
purchasing game, as a two-stage Stackelberg game.
First, the seller leads by choosing the prices p ∈P to be
offered to the agents. Second, the agents follow by
deciding whether to purchase the item, αi ∀i∈(. We
are interested in subgame perfect equilibria of this two-
stage game (see, e.g., Fudenberg and Tirole 1991).
For a fixed-price vector, the second stage equilib-
ria, referred to as the purchasing equilibria, are de-
fined by

α∗i ∈ argmax
αi∈{0,1}

ui (αi,α∗
−i, pi) ∀i∈(.

We note that this definition is similar to the consump-
tion equilibria of a divisible good in Candogan et al.
(2012). However, in our case, the decision variables αi
are restricted to be binary so that agents cannot buy
fractional amounts of the item. We also note that the
two-stage problem is nonconvex as it includes terms of
the form αipi in the seller’s objective and αiαS in the
objective functions of the agents (which are used as
constraints in the seller’s problem). In addition, the
discrete nature of the purchasing decisions increases the
complexity of the problem as it yields a nonconvex-
integer program.

3. Purchasing Equilibria
In this section, we consider the second-stage game and
show the existence of a pure Nash equilibrium (PNE)
strategy given any price vector. We observe that there
could be multiple pure Nash equilibria, but we char-
acterize all these equilibria via a system of constraints
using duality theory. We also identify a mild condition
that allows us to focus on the purchasing equilib-
rium that is preferred by both the seller and the net-
work of agents. We later show that our optimization
formulation naturally induces this preferred purchas-
ing equilibrium.

Theorem 1. Consider the second-stage game played si-
multaneously by the network of agents.

(1) The second-stage game has at least one PNE for any
given price vector p.

(2) There exists a small ε≥ 0 such that a price pertur-
bation pi − ε∀i∈( does not change any of the PNEs. In
addition, it ensures that all agents in all PNEs strictly prefer
one of the actions (buy or no buy).

(3) Among the multiple PNEs, there exists a unique
Pareto-optimal PNE in which each agent’s utility is at least as
large as in any other PNE and is strictly higher for at least one
agent. This implies that all agents who buy in any PNE will
also buy in the Pareto-optimal PNE while deriving a higher
utility.

The proof can be found in Online Appendix B. The
existence of a PNE follows from the fact that, for a
given price vector, the second-stage game is of stra-
tegic complements (see, e.g., Jackson and Zenou 2014).
Note that the first part of Theorem 1 guarantees the
existence of a PNE but not necessarily its uniqueness.
Consider the following simple example in which two
distinct PNEs arise. Assume a network with two
symmetric agents that mutually influence one another:
g1� g2 � 2 and g21� g12 � 1. Consider the price vector
p1� p2 � 2.5. In this case, we have two PNEs: buy–buy
and no buy–no buy. In other words, if player 1 buys,
player 2 should buy, but if player 1 does not buy, player
2 will not either. Therefore, uniqueness is not guar-
anteed. More precisely, for any price strictly larger than
three or strictly smaller than two, we have a unique
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equilibrium, but for any price between two and three,
we havemultiple equilibria. Nevertheless, for any price
between two and 3 − ε, the purchasing equilibrium is
preferred by the agents as they each derive a positive
utility from buying. In particular, for any price but
three, ε can be set to zero, and for p � 3, any small
positive number will work. As a result, even though
there exist multiple equilibria, by reducing the price by
ε, the purchasing equilibria is strictly preferred by both
agents. The purpose of ε, as can be noted from this
example, is to ensure that agents with ties will buy
without affecting other agents’ decisions. Note that the
value of ε can be taken very small so that it does not
affect the revenue of the seller significantly.

In the last part of Theorem 1, we show that the seller’s
preferred equilibrium is unique and is also collectively
preferred by all the agents. In particular, we show that
among all PNEs, the preferred equilibrium has the
property that any buyer in other PNEs will also buy in
the preferred equilibrium. In Section 4, we demonstrate
that the nature of the first-stage game always induces
the purchasing equilibrium of interest (in this example,
buy–buy), and hence, the rest of the paper focuses on
this preferred equilibrium.

3.1. Characterization of the Purchasing Equilibria
The natural next step is to characterize the purchasing
equilibria as a function of the prices, that is, to derive the
functions αi (p)∀i∈(. This allows us to reduce the two-
stage problem to a single optimization formulation, in
which the only variables are the prices. In our setting,
a closed-form expression for αi (p) is not straightfor-
ward. Instead, by using duality theory, we characterize
the set of constraints the equilibria should satisfy for any
given price vector. We begin by making the following
observation regarding the utility maximization problem
of each agent.

Observation 1. Consider problem (6) for agent i under
a given price vector p. If other agents’ decisions α−i are
given, the problem of agent i has a tight LP relaxation.

In fact, for fixed values of p and α−i, the subproblem
faced by agent i happens to be a simple assignment
problem. If the quantity

∑
S⊂(\{i} gS,iαS− pi)(

is positive,
α∗i � 1, and if this quantity is negative, α∗i � 0. Finally, if
this quantity is equal to zero, α∗i can be any number in
[0, 1] so that the agent is indifferent between buying
and not buying. Therefore, the LP relaxation of the
problem faced by agent i (for fixed values of p and α−i)
is integral.

Observation 1 allows us to transform problem (6) for
agent i into a set of constraints by using duality theory.
More specifically, this set of constraints consists of
primal feasibility, dual feasibility, and strong duality

conditions. For agent i, the constraints can be written as
follows:

Primal feasibility: 0≤αi ≤ 1. (8)

Dual feasibility: yi ≥
∑

S⊂(\{i}
gS,iαS − pi, (9)

yi ≥ 0. (10)

Strong duality: yi � αi

( ∑
S⊂(\{i}

gS,iαS − pi
)
. (11)

Here, the variable yi represents the dual variable of
problem (6). Combining constraints (8)–(11) for all agents
characterizes all the equilibria (mixed and pure) of the
second-stage game as a function of the prices. To restrict
our attention to the pure Nash equilibria (whose exis-
tence is guaranteed by Theorem 1), one can impose
αi ∈ {0, 1}∀i. Observe that this characterization has re-
ducedN + 1 interconnected optimization problems to be
compactly written as a single formulation. Note that the
number of variables increases by N as we add a dual
continuous variable for each agent.

4. Optimal Pricing: MIP Formulation
In this section, we use the existence and characteriza-
tion of the PNEs to transform the two-stage problem into
a single optimization formulation. This formulation
happens to be a nonconvex-integer programbut exhibits
some interesting properties. We then reformulate the
problem to arrive at an MIP with linear constraints.
We next formulate the pricing problem faced by the

seller (denoted by Z) by incorporating the second-stage
PNE characterized by constraints (9)–(11) and αi ∈ {0, 1}
for each agent. The binary function defining αS in
Equation (2) is also included. The class of optimization
problems with equilibrium constraints is referred to
as mathematical program with equilibrium constraints
and is well studied in the literature (see, e.g., Luo et al.
1996). The formulation is given by

max
p∈P
y,α

∑
i∈(

αi(pi − c) (Z)

s.t.

yi � αi

( ∑
S⊂(\{i}

gS,iαS− pi
)

yi ≥
∑

S⊂(\{i}
gS,iαS − pi

yi ≥ 0
αi ∈ {0, 1}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀ i∈(

αS � max
S′⊂S

|S′ |�min{Γ,|S|}

{
∏
j∈S′

αj

}
∀ S⊂(.

In addition to the presence of binary variables and the
binary functions defining αS, one can see that prob-
lem (Z) is nonlinear (and nonconvex) as it includes
terms of the form αiαS and αipi. Therefore, problem (Z) is
not easily solvable by commercial solvers. We next show
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that, by introducing a few additional continuous vari-
ables, one can reformulate problem (Z) into an equivalent
MIP with the same number of binary variables. To gain
tractability, we consider valuation models in which the
terms gS,i for large |S| are set to zero. This motivates the
following definition.

Definition 1. The K-wise utility model is a model in
which gS,i � 0 for all subsets |S| >K − 1.

Note that a larger value of K results in a more
nonlinear utility model when comparedwith a smaller
K (e.g., for K � 2, αS is always linear, and for K � 3 it
becomes quadratic). We next present the MIP for the
K-wise utility model. We first define the following ad-
ditional variables while also redefining the variable αS:

zi � αipi ∀ i∈(, (12)

αS� ∏
j∈S

αj ∀ 1< |S| < Γ + 2, S⊂(, (13)

βS � max
S′⊂S,|S′ |�Γ

{αS′} ∀ Γ< |S| < K,S⊂(, (14)

ηS,i � βSαi ∀ i∈∕ S, Γ< |S| <K,S⊂(, i∈(. (15)

The variables βS and ηS,i are defined for sets S sat-
isfying |S| > Γ. The variables αS are defined for sets S
satisfying |S| ≤ Γ + 1. By using the binary nature of the
variables and adding certain linear constraints, we can
replace all nonlinear terms in problem (Z). This yields
the followingMIP denoted by Z-MIP. For simplicity of
exposition, we present it for the casewhen Γ � K − 1 (and,
hence, the βS, ηS,i variables are absent). Themore general
formulation can be found in Online Appendix C.

max
p∈P
y,z,α

∑
i∈(

(zi − cαi)

s.t.
(Z-MIP)

yi �
∑
|S|<K
S⊂I\{i}

gS,iαS∪i − zi

yi ≥
∑
|S|<K
S⊂I\{i}

gS,iαS − pi

yi≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀ i∈( (16)

zi≥ 0
zi ≤ pi
zi ≤ αipmax

zi ≥ pi − (1 − αi)pmax

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭ ∀ i∈( (17)

αS ≥ 0
αS ≤αS\{i} ∀ i∈ S

}
∀ 1< |S| <K + 1,

S⊂(

(18)
αS∪{i,j} ≥αS∪{i} + αS∪{j} − αS ∀ |S| <K − 1,

S⊂(\{i, j}, {i}≠ {j}⊂(

(19)
αi ∈ {0, 1} ∀ i∈( (20)
α∅ � 1. (21)

In this formulation, pmax denotes the maximal price
allowed and is typically known from the context. For
example, one can take pmax � maxi

∑
S⊂I gS,i

{ }
without

affecting the problem at all because no agent would
ever pay a price beyond this value. The set of constraints
(17) aims to linearize and guarantee the definition of the
variable zi. The sets of constraints (18) and (19) linearize
and ensure the correctness of the variable αS. For ex-
ample, constraint (19) for agents i and j and S � ∅ is
given by αi,j ≥αi + αj − 1, which ensures αi,j � αiαj.
We note that in the Z-MIP formulation under the

K-wise utility model, we have a total of (at most) 4N +∑Γ+1
k�2

N
k

( ) +∑K−1
k�Γ+1

N
k

( )(1 +N− k) variables (4N for the αi,
p, y, and z, the second term accounts for αS, and the
last term corresponds to βS and ηS,i). However, only N
variables are binary, and the remaining are all con-
tinuous. In particular, in the pairwise setting (K � 2),
we have 4N + N

2

( )
variables, and in the triple-wise set-

ting (K � 3), we have 4N + N
2

( ) + (N3 ) variables if Γ � 2
and 4N + N

2

( ) + (N3 )(N − 1) if Γ � 1. In other words,
for small values of K (e.g., two or three), the number
of variables is a small-degree polynomial in N.
We conclude that our problem of designing prices for

selling an indivisible good to agents embedded in
a social network can be formulated as anMIP. ThisMIP
is equivalent to the two-stage nonconvex IP game with
which we started. This formulation can be viewed as an
operational tool to solve the optimal pricing problem
(as we discuss in Section 6.2, the MIP formulation also
holds when externalities can be negative). This is in
contrast to previous approaches that proposed tailored
algorithms for the problem in which one cannot easily
incorporate business rules. However, solving an MIP
may not be always feasible. If the size of the network is
not very large, one can still solve it efficiently using
commercial MIP solvers. Moreover, it is possible to
solve the problem off-line (before launching a new
product, for example) so that the running time may not
be of the highest consideration. Potentially, one can
also consider network-clustering methods to aggregate
or coalesce several nodes to reduce the network size. If
the network size is very large, one needs to find more
efficient methods to solve Z-MIP. In the next section,
we derive efficient optimal methods (polynomial in the
number of agents) to solve the problem for two popular
pricing strategies.

5. Efficient Optimal Algorithms
5.1. Discriminative Prices
We next consider the general pricing strategy in which
the firm offers discriminative prices that potentially
differ for each agent in the network; that is, P � RN+
in Z-MIP. This scenario is of interest in various prac-
tical settings in which the seller gathers the purchas-
ing history of each potential buyer and the buyer’s
geographical location as well as other attributes. It can
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also be used by the seller to understand who the in-
fluential agents in the network are and what the
maximal profit that can be achieved when using dis-
criminative prices is. The prices can then be imple-
mented by setting the same ticket price for everyone
and sending out coupons with discriminative dis-
counts. In fact, in practice, it often occurs that people
receive different deals for the same item depending on
the loyalty class, purchasing history, and geographical
location. The method we propose aims to provide a
systematic and automated way of finding the prices
(equivalently, discounts) to offer to agents embed-
ded in a social network based on their externalities to
maximize the seller’s profit.

As discussed, solving Z-MIP using an optimization
solver may be impractical for large networks. We next
show that solving the LP relaxation of Z-MIP yields
the desired optimal integer solution. Consequently, one
can solve the problem efficiently (polynomial in the
number of agents and very fast in practice) and obtain
an optimal solution even for large networks. Recall that
the linearization of problem (Z)was possible because of
the integrality of the decision variables. In other words,
to reformulate problem (Z) into Z-MIP, the binary
restriction was crucial. As a result, by introducing the
new variables zi, αS, βS, and ηS,i, one may potentially
obtain fractional solutions that cannot be implemented
in practice. However, the following theorem shows that
the optimal solutions of Z-MIP can be identified using
its continuous relaxation.

Theorem 2. The optimal discriminative pricing solution of
Z-MIP can be obtained efficiently (polynomial in the number
of agents). In particular, problem Z-MIP admits a tight LP
relaxation.

The proof can be found in Online Appendix D. After
solving the LP, we first order the agents in increasing
order of αi and then sequentially increase each agent’s
αS value (with which i∈ S) to the next agent’s αi value
(equal to one after the last iteration). We do so carefully
by maintaining the feasibility of the LP relaxation and
without affecting other buyers’ decisions or decreasing
the seller’s profit. This process is repeated until all agents
who bought a fractional amount fully purchase the item.
One can use this constructive argument or a solution
approach, such as the simplex method, to arrive at the
optimal extremepoints that are guaranteed to be integer.

Theorem 2 suggests an efficient method to solve the
problem that we formulated as a two-stage nonconvex-
integer program. The LP-based method inherits all
the complexity properties of linear programming and
is, thus, applicable to large networks. Next, we derive
some properties of the optimal solution. Interestingly, if
we know the optimal set of buyers, the corresponding
optimal prices can be obtained in closed form as sum-
marized in the following observation.

Observation 2. Suppose T∗ is the optimal set of buyers;
that is, T∗ � {i∈(|α∗i � 1}. Let S∗(T∗) be the sets for
which αS � 1, S ∈ S∗(T∗), obtained from Equation (2).
Then, the optimized prices are

p∗i �
∑

S∈S∗(T∗)\{i}
gS,i ∀i∈T∗

pmax otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (22)

In otherwords, the price of an agentwho buys is the sum
of the agent’s own value (gi) and a markup term cor-
responding to the externalities of the “buying” network
on this agent. Membership of agent i into the buying
class depends on the self-value gi and on the externalities
exerted by agent i on the network. The corresponding
optimal profit is given by

Π∗ � ∑
i∈T∗

[ ∑
S∈S∗(T∗)\{i}

gS,i − c
]

� ∑
{i∈T∗ | gi ≥ c}

(gi − c)⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
Profit in the absence of network effects

+ ∑
{i∈T∗ | gi < c}

(gi − c) + ∑
i∈T∗

∅≠ S∈ S∗(T∗)\{i}

gS,i

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Incremental profit due to network effects

.
(23)

We separate the profit into two components. First is
the profitable component of individual valuations,
which the seller earns even in the absence of network
externality effects. Second is the incremental profit
resulting from network effects, which balances the
seller’s profit from unprofitable individual valuations
with the revenue gain from network externalities.
Note that prices for nonbuyers are set to pmax to ensure

that no agent will buy. The prices in Equation (22)
are optimal as they result in the maximal profit that can
be extracted by the seller given that agents in T∗ are
buying. That is, the seller extracts the full consumer
surplus as expected because we consider a setting with
complete information. One can see that T∗ includes all
agents in ( whose individual valuations are profitable.
In addition, some buyers may be offered a price below
cost. One can view these agents as influencers who
receive membership into the buying class because of
their strong network externalities. On the flip side, the
seller charges higher prices for strongly influenced
agents. As a result, the seller taps into an additional
source of profits by taking advantage of the network
effects. The computational challenge lies in identifying
the optimal set of buyers T∗. The LP approach pre-
sented in Theorem 2 allows efficiently finding T∗ under
the utility model (1).
We next use the closed-form solutions in Equations (22)

and (23) to compare the prices and profit between
the linear model in Equation (3) and the nonlinear
models in Equation (4)a and (4)b. More precisely, we
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consider a setting in which gi ≥ 0 and gj,i ≥ 0 are the
same across all three models. However, the g{j,k},i are set
to zero in the linear model and are nonnegative in the
other models. We denote the problem and the optimal
solutions of models (3), (4)a, and (4)b with subscripts
(K � 2, Γ�1), (K � 3, Γ�1), and (K � 3, Γ � 2), respec-
tively, and make the following observation.

Observation 3. The optimal solutions satisfy the fol-
lowing trends:

• T∗
(K�2,Γ�1) ⊂T∗

(K�3,Γ�2) ⊂T∗
(K�3,Γ�1), where T∗ � {i∈

(|α∗i � 1};
• p∗i,(K�2,Γ�1)≤p∗i,(K�3,Γ�2)∀ i∈T∗

(K�2,Γ�1) and p∗i,(K�3,Γ�2) ≤
p∗i,(K�3,Γ�1)∀ i∈T∗

(K�3,Γ�2);
• Π∗

(K�2,Γ�1) ≤Π∗
(K�3,Γ�2) ≤Π∗

(K�3,Γ�1), where Π∗ de-
notes the optimal profit.

As we move from the linear model in Equation (3) to
the nonlinear model (4), additional agents will buy. In
addition, buyers will pay a higher price, hence in-
ducing a larger seller’s profit. As the value of Γ de-
creases, additional agents will buy. In particular, as the
g{j,k},i term increases, it results in a larger number of
agents buying the item. The seller can also charge higher
prices and, consequently, earn a higher profit. The ad-
ditional agents will further increase the profit. Inter-
estingly, one can extend Observation 3 as a function of
the degree of nonlinearity K and the threshold value Γ.

Corollary 1. Consider the nonlinear utility model in
Equation (1) for given K and Γ. Then

• The set of buyers, the optimal prices, and the seller’s
profit increase with K.

• The set of buyers, the optimal prices, and the seller’s
profit decrease with Γ.

Corollary 1 allows us to understand the impact of
both the degree of nonlinearity and the threshold value
of our utility model on the optimal outcomes. Together
with Equation (23), Corollary 1 highlights the impor-
tance of these parameters. In particular, the value of K
affects the optimal prices and profit, and the value of Γ
affects the active influential sets S. This result suggests
that incorporating nonlinearity factors in the utility can
significantly modify the pricing decisions.

5.2. Uniform Price
In this section, we consider the case in which the seller
offers a uniform price across the network while in-
corporating externality effects. This scenario ariseswhen
the firm may not want to price discriminate because of
fairness or ethical reasons and prefers to offer a uniform
price. We observe that a similar result as in Theorem 2
for the setting with uniform pricing does not hold. In
other words, by adding the (linear) uniform price
constraint p1� p2� . . . � pN to Z-MIP, the correspond-
ing LP relaxation is no longer tight, and we obtain
fractional solutions that cannot be implemented in

practice. Geometrically, it means that incorporating
such a constraint in the Z-MIP formulation is equivalent
to adding a cut that violates the integrality of the ex-
treme points of the feasible region. Therefore, we pro-
pose an alternative approach to optimally solve the
problem by using an efficient algorithm based on iter-
atively solving the relaxed Z-MIP, which is an LP.

Theorem 3. The optimal solution of Z-MIP for the case of
a single uniform price can be obtained efficiently (polynomial
in the number of agents) by applying Algorithm 1.

We show the termination of Algorithm 1 in finite
time and prove its correctness in Online Appendix E. At
a high level, the procedure in Algorithm 1 iteratively
reduces the size of the network by eliminating agents
with low valuations (at least one such agent per itera-
tion). As a result, it suffices to consider only a finite
selection of prices (at least as high as cost) to identify the
optimal uniform price.

Algorithm 1 (Procedure for Finding the Uniform Opti-
mal Price)
Input: c, N, and G
Procedure

1. Set the iteration number to t = 1, solve the relaxed
Z-MIP (an LP), and obtain the vector of dis-
criminative prices p(1).

2. Find the minimal discriminative price defined as
p(t)min � max

{
c,mini∈(p(t)i

}
and evaluate the objective

functionΠ(t)with pi � p(t)min ∀i∈( using formula (D.1).
3. Remove all agents who receive prices less than or

equal to the minimal discriminative price from the
network (including all their edges). If there are no
more agents in the network, go to step 5. Otherwise,
go to step 4.

4. Re-solve the relaxed Z-MIP for the reduced net-
work and denote the output by p(t+1). Set t≔ t + 1
and go to step 2.

5. The optimal uniform price is p( t̂)min, where t̂ �
arg maxΠ(t), that is, the price that yields the high-
est profit.

6. Extensions
In this section, we consider two extensions of themodels
and results developed in Sections 3–5. First, we present
two heuristic methods to solve the problem under
discriminative prices. Second, we discuss the setting in
which externalities among agents can be negative.

6.1. Heuristic Methods
In Section 5, we developed efficient optimal algorithms
to solve the problem for discriminative prices and
uniform price. Our solution approach is based on
solving a (continuous) LP. Although these algorithms
are efficient for most practical instances, they require
the use of an optimization solver. In this section, we
present two intuitive heuristic methods that are
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motivated by exploiting the insights drawn in
Observation 2. Such approaches are transparent and
easy to interpret but will generally yield a suboptimal
solution. As noted in Observation 2, a key element of the
optimal solution consists of identifying the optimal set
of buyers T∗. Instead of solving an LP or enumerating
all possible subsets (there are exponentially many), we
propose two greedy approaches to construct the set of
buyers. First, we present the greedy expansion pro-
cedure, in which we iteratively add to the set of buyers’
agents who yield a positive marginal contribution to the
profit. Second, we consider the greedy removal pro-
cedure, in which the initial set of buyers includes all
agents and we iteratively remove the agent who de-
creases the seller’s profit the most. The details of both
procedures are reported in Algorithms 2 and 3, re-
spectively. For simplicity of exposition, we focus on the
utility model (3) that captures the individual network
effects of neighbors only (i.e., K � 2 and Γ � 1). Note,
however, that both heuristic methods easily extend
to the more general utility model.

Algorithm 2 (Greedy Expansion Procedure)
Input: c, N, and G
Procedure

1. Assign all agents with gi ≥ c to the set of buyers,
which we denote by TGEP

1 . For all remaining agents
j∈N/TGEP

1 , update gj to g̃j � gj + ∑
i∈TGEP

1
gi,j.

2. Assign all agents j with g̃j ≥ c to the set of buyers
denoted by TGEP

2 .
3. Repeat steps 1–2 until convergence. After this

step, we call the set of buyers TGEP
3 . We are now

left only with agents such that g̃i ≥ c.
4. For all remaining agents i∈N/TGEP

3 , compute the
quantity Ai � ( g̃i − c) +∑

k∈TGEP
3

gi,k, if Ai ≥ 0, add
agent i to the set of buyers, which we denote by
TGEP
4 . For all remaining agents j∈N/TGEP

4 , update
g̃j to g̃j � gj +∑

i∈TGEP
4

gi,j.
5. Repeat step 4 until convergence. After this step,

we call the set of buyers TGEP
5 .

6. For the remaining agents, we can use one of the
following three options: (i) solve a smaller scale
LPwith the remaining agents, (ii) test adding each
pair (or higher subsets) of agents to the set of
buyers, or (iii) simply label the remaining agents
as non-buyers.

Algorithm 3 (Greedy Removal Procedure)
Input: c, N, and G
Procedure

1. Assign all agents to the set of buyers, that is,
TGRP
1 � N, and compute the vector of prices using

equation (5.1) with TGRP
1 instead of T*.

2. For each agent i, compute the quantity Bi �
(pi − c) +∑

k∈TGRP
1

gi,k. This quantity represents the
contribution of including agent i to the set of
buyers in the seller’s profit.

3. If Bi ≥ 0,∀i∈TGRP
1 , the procedure terminates.

Otherwise, remove the agent with the smallest
(i.e., the most negative) value of Bi from the set of
buyers. If several agents attain the smallest value,
break ties randomly. Note that we can extend
this step by considering simultaneously removing
higher subsets of agents (e.g., pairs). After this
step, we call the set of buyers TGRP

3 .
4. Repeat steps 1–3 (i.e., update the set of buyers to

TGRP
3 , compute the prices and the quantityBi for each

i in TGRP
3 , and remove the agent with the smallest

Bi < 0) until convergence. Note that in each step, we
only need to update a small number of prices.

Both heuristic methods iteratively construct the set
of buyers by exploiting the network externality struc-
ture among agents. In the greedy expansion procedure,
we first ensure that all agents with a high self-value gi
purchase the item. We then use the network effects of
such agents to identify new agents that will buy and
assign them to the set of buyers. Next, we iteratively
include to the set of buyers other agents who have
a nonnegative marginal increase in the total seller’s
profit (captured by Ai). At this point, we are left with
a smaller set of agents for which it is harder to deter-
mine if they belong to the set of buyers. Those agents
have a negative marginal contribution, when we add
exactly one of them to the set of buyers. Nevertheless, it
is possible that adding several of them simultaneously
is profitable. To solve this subproblem to optimality,
one can solve a smaller LP or enumerate all possible
subsets. Alternatively, one can simply assume that these
agents are nonbuyers. In the greedy removal procedure,
we first assign all agents to the set of buyers. We then
iteratively remove the agent with the most negative
marginal decrease to the seller’s profit (captured by Bi).
We stop the procedure when removing a single agent
from the set of buyers does not increase the profit
anymore. We next present parametric bounds on the
profit performance of these heuristic methods. We de-
note by CI the set of agents such that gi < c and by |CI |

the number of such agents. We call gmax the maximal
value of gi,j for agents in CI, that is, gmax � maxi∈CI ,j∈N gi,j,
and denote by NI,max the maximal number of neighbors
for agents in CI.

Proposition 1. The greedy expansion and greedy removal
procedures satisfy the following:

(1) Assume that the remaining agents in step 6 of Al-
gorithm 2 are labeled as nonbuyers. In this case, the final set
of buyers is TGEP

5 and satisfies TGEP
5 ⊆T∗. In addition, the

worst-case additive loss is |CI |NI,maxgmax.
(2) The greedy removal procedure admits a worst-case

additive loss of |CI |c.

Interestingly, the performance of both heuristic
methods depends on the agents from the set CI.
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Specifically, the results of Proposition 1 can be shown by
subtracting the contribution of all agents in CI from the
optimal profit (the formal proof is not reported for
conciseness). Note that the first bound (|CI |NI,maxgmax)
represents the largest possible loss, which is computed
by assuming that all agents in CI collectively yield
a positive profit. Inmost instances, the loss will be much
smaller (for example, one can replace CI by the set of
remaining agents in step 6 ofAlgorithm2). Similarly, the
second bound (|CI |c) corresponds to the worst-case of
mistakenly including all agents in CI. Note that when
CI � ∅, both greedy procedures yield the optimal so-
lution as expected. These parametric bounds admit the
following interesting implication. For the greedy ex-
pansion procedure, in the worst case, we miss all agents
with gi < c, whereas, in the greedy removal procedure, in
the worst case, we mistakenly include all agents with
gi < c. This implies that, when one heuristic method
will not perform well, the other will and vice versa.
Interestingly, one can show that the greedy removal
procedure is optimal for the special case of super-
modular valuation functions.

In summary, we have exploited the structure of the
problem to propose two greedy heuristic procedures.
As mentioned, one can also use the greedy expansion
procedure to significantly reduce the size of the LP to
compute the optimal solution, and this method can also
be used as a subroutine in Algorithm 1 instead of the LP.

6.2. Setting with Negative Externalities
In the previous sections as well as in several papers in
the literature, the focus has mainly been on settings
with nonnegative externalities. One exception is the
recent work in Cao et al. (2017) in which the authors
take an algorithmic approach to solve the iterative
pricing problemwith negative externalities. They show
that the problem is NP-hard and propose a two-
approximation algorithm. The problem considered in
Cao et al. (2017) is different than ours as the seller can
post an iterative list of uniform prices for all the agents
(multiple selling rounds). In addition, their utility
model is a special case of our model (they consider
pairwise interactions terms that are all negative). In
many practical applications, the externalities among
agents in the network can be both positive and negative
(e.g., negative reviews on a product sold via an online
platform). In this section, we discuss how our results
change for a setting in which externalities can be either
positive or negative.2 First, the existence of a PNE for
the second-stage game is not always guaranteed when
externalities can be negative (and, therefore, Theorem 1
does not hold in general). Nevertheless, the charac-
terization method of the purchasing equilibria still
applies. In particular, the Z-MIP formulation presented
in Section 4 remains the same. The main difference is
that when externalities can take negative values, it is

possible that the MIP is infeasible. In this case, it means
that there is no PNE for the purchasing game under any
price vector. By solving the Z-MIP problem, we can
then determine whether a PNE exists, and if it does, we
can compute the most profitable solution for the seller.
We summarize this result in the following corollary.

Corollary 2. Consider a setting with general externalities. If
Z-MIP is infeasible, it means that there is no PNE under any
price vector. Otherwise, its optimal solution leads to the optimal
price vector and to the resulting purchasing PNE. This optimal
solution corresponds to themost profitable outcome for the seller.

The implication of Corollary 2 is twofold: (1) the
Z-MIP formulation allows us to determine whether
a PNE exists for the network of agents under any price
vector, and (2) if it does, it can compute the optimal
outcome for the seller. Computing an equilibrium
under negative externalities is a hard problem (Cao
et al. (2017) show that a similar version of this problem
is NP-hard). As a result, the Z-MIP formulation we
introduce in this paper allows us to solve the problem
for a wide range of utility models under either posi-
tive or negative externalities. Unfortunately, the effi-
cient optimal approach presented in Section 5.1 uses
the nonnegativity of the externalities to ensure the
integrality of the formulation. We then propose either
to solve Z-MIP directly or to use one of the heuristic
methods presented in Section 6.1. Note, however, that
the parametric bound in Proposition 1 holds only for
the setting with nonnegative externalities.

7. Price Incentives to Guarantee Influence
So far, we have assumed that network externality effects
always materialize as long as agents purchase the item.
This assumption is not realistic in many practical set-
tings. After purchasing an item, it is sometimes not
entirely natural to exert network externalities unless one
takes some effort to do so. This, for example, could be by
writing a review, endorsing the item on social media, or
at the very least announcing the purchase. However, to
the best of our knowledge, most previous work imposes
the assumption that purchasing is equivalent to influ-
encing (i.e., exerting network externality effects) with the
exception of Arthur et al. (2009). In the latter, the authors
study a cash-back setting in which the seller offers an
exogenous uniform cash reward to any recommender
if the recommender influenced at least one friend to
purchase the item. We study a similar model in the
context of purchasing equilibrium and the optimization
framework proposed in this paper.
Consider a setting in which the seller offers both

a price and a discount (also referred to as incentive) to
each agent. If the agent decides to purchase the item,
the agent can claim the discount in return for influence
actions, such as liking the product in online platforms
or writing a review. Using such a model, the seller can
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now ensure the externalities so that network effects are
guaranteed to occur. In the previous setting in which
externalities were assumed to always occur, the actual
profits may be far from the value predicted by the
optimization. In fact, we show via a computational
example in Section 8 that even if a few agents do not
exert the agents’ externality effects, it can significantly
reduce the seller’s profit. We next extend our model
and results to this more general setting.

7.1. Model
For simplicity, we focus on the utility model (3) that
captures individual externalities of neighbors only. We
consider a model with a continuum of actions to in-
fluence neighbors. Let ti ≥ 0 denote the utility of the
maximal effort needed by agent i to claim the entire
discount offered by the seller. If agent i decides to
purchase the item, we assume that γiti is the effort
required by agent i to claim a fraction γi of the dis-
count, and 0≤γi ≤ 1. We view ti as the influence cost of
agent i and the variable γi as the externality intensity
chosen by agent i. The parameter ti can be estimated
from historical data, such as past purchases and number
of reviews written. For a given price vector p and dis-
count vector d, we extend the utility function of agent i
in Equation (5) as follows:

ui
(
αi,γi,α−i,γ−i, pi, di

) � αi

(
gi +

∑
j∈(\{i}

γjgji − pi
)

+ γi(di − ti),
where αi is the binary purchasing decision of agent i
and γi ≤αi. If agent i does not purchase the item, αi � 0
and γi � 0. In other words, the constraint γi ≤αi cap-
tures the fact that only buyers can exert externalities on
friends. However, if agent i purchases the item, then
αi � 1 and γi can be any number in [0, 1] as chosen
by agent i. Here, α−i and γ−i are the decisions of all
other agents but i. Similarly to problem (6), the utility
maximization problem for agent i is given by

max
αi ,γi

ui
(
αi,γi,α−i,γ−i, pi, di

)
s.t. 0≤γi ≤αi

αi ∈ {0, 1}.
(24)

In a similar way as problem (7), the seller’s profit-
maximization problem can be written as

max
p,d∈P

∑
i∈(

[
αi (pi − c) − γidi

]
. (25)

Here, the seller’s decision variables are p and d, which
are two vectors of prices and discounts with a com-
ponent potentially different for each agent. As be-
fore, these vectors can be chosen according to different
strategies. For example, one can consider a fully dis-
criminative, a uniform pricing strategy, or—more

generally—a hybrid model in which the regular price is
uniform across the network (i.e., pi�pj), but the dis-
counts are tailored to the various agents. This hybrid
setting corresponds to a common practice of online
sellers who offer a standard posted price but design
personalized discounts for different classes of cus-
tomers (sent via targeted coupons). The variables αi

and γi are decided according to each agent’s utility
maximization problem given in Equation (24). If agent
i decides to buy the product, then the seller incurs
a profit of pi − γidi − c.
In the special case in which αi � γi and ti � 0∀i∈(,

we recover our previous model. In addition, by adding
the constraint γi ∈ {0, 1}, we have an interesting setting
in which each agent can only buy at two different
prices: a full price pi (that does not require any action)
and a discounted price pi − di that requires an action to
influence. Note that one can easily extend the model in
this section to more than two prices to incorporate
a finite set of different actions specified by the seller.

7.2. Results
Our goal is to extend our results to this general setting.
We next show that for any given prices and discounts
there exists a PNE for the second-stage game.

Theorem 4. The second-stage game has at least one pure
Nash equilibrium for any given vectors of prices p and
discounts d chosen by the seller. A small perturbation in
prices and discounts results in a Pareto-optimal PNE that is
preferred by both the seller and the network of agents.

The proof of Theorem 4 is not presented for con-
ciseness and is of similar nature as the proof of
Theorem 1. In this case, a PNE is defined by restricting
the purchasing decisions αi to be zero or one. Never-
theless, we note that there always exists an equilib-
rium in which the variables γi are also all integer. More
precisely, if di − ti > 0 (recall that prices and discounts
are given), γi can be set to one, and otherwise, γi � 0. As
a result, there exists a PNE with γi integer. Note that
a result similar toObservation 1 still holds, and hence, one
can characterize the equilibria (mixed and pure) as a set
of constraints in which the binary variables are relaxed to
be continuous. In this case, one can transform sub-
problem (24) to a set of constraints using duality theory:

Primal feasibility: 0≤αi ≤ 1, (26)
0≤γi ≤αi. (27)

Dual feasibility: yi − wi ≥ gi +
∑

j∈(\{i}
γjgji − pi, (28)

wi ≥ di − ti, (29)
yi,wi ≥ 0. (30)

Strong duality: yi � αi

(
gi +

∑
j∈(\{i}

γjgji − pi
)

+ γi(di − ti). (31)
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In this case, we have two continuous dual variables yi
and wi, together with two dual feasibility constraints for
each agent i. Similar to the earlier setting, we impose αi
to be binary for all i∈( to restrict to pure equilibria. We
can then formulate the optimal pricing problem, similar
to problem Z, that maximizes the profit given in
Equation (25) with the equilibrium constraints (26)–(31):

max
p,d∈P
y,w,α,γ

∑
i∈(

[
αi(pi − c) − γidi

]
s.t. constraints (27)–(31),αi ∈ {0, 1} ∀ i∈(.

We denote this problem by Zi, where i represents the
model with incentives to guarantee influence of the
present section. We make the following observation.

Observation 4. Every optimal solution of problem Zi
satisfies di ≤ ti.

This follows from the fact that the seller can reduce di
to be equal to ti while maintaining feasibility and strictly
increasing the objective. This implies that constraint (29)
is redundant in the optimal pricing problem. By using
constraints (28)–(30), one can always assignwi � 0 while
maintaining feasibility without altering the objective.
This observation allows us to simplify problem Zi by
removing all dual variables wi ∀i∈(.
Proposition 2. Problem Zi admits a tight continuous re-
laxation. Moreover, there always exists an optimal solution
to problem Zi in which all variables γs are also integer.

The second result in Proposition 2 is interesting as
it implies that, even though the seller allows for a
continuum of influence actions, the buyer would ei-
ther fully influence or not influence at all. As a result,
this is equivalent to the setting in which the seller
offers only two options: a full price pi and a discounted
price pi − di in exchange for a specific action to
influence.

Problem Zi has nonlinearities of the form αiγj, αipi,
and γidi. Using the discreteness of αi and γi from
Proposition 2, one can transform problem Zi into the
following MIP, denoted by Zi-MIP:

max
p,d∈P

y,z,zd,x,α,γ

∑
i∈(

(zi − zdi − cαi) (Zi-MIP)

s.t.

yi � αigi +
∑

j∈(\{i}
xjigji − zi

( )
+ (zdi − γiti)

yi ≥ gi +
∑

j∈(\{i}
γjgji − pi

γi ≤ αi
yi ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀ i∈( (32)

zi, zdi ≥ 0
zi ≤ pi
zi ≤ αipmax

zi ≥ pi − (1 − αi)pmax

zdi ≤ di
zdi ≤γip

max

zdi ≥ di − (1 − γi)pmax

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀ i∈( (33)

xji ≥ 0
xji ≤ αi

xji ≤ γj
xji ≥ αi + γj − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭ ∀ i≠ j∈( (34)

αi,γi ∈ {0, 1} ∀ i∈(. (35)

Note that we removed the dual variables wi using
Observation 4. We conclude that the problem of
designing prices and incentives for selling an indivisible
item to agents in a social network can be formulated
as an MIP. For the case of discriminative prices and
discounts, that is, when P � RN+xRN+ , we next show
a similar result as Theorem 2.

Theorem 5. The optimal discriminative pricing solution
of Zi-MIP can be obtained efficiently (polynomial in the
number of agents). In particular, problem Zi-MIP admits
a tight LP relaxation.

The main idea behind the proof is composed of the
following two steps. First, fix the values of γi, z

d
i and

proceed in the same fashion as in Theorem 2 to con-
struct a solution with αi integer∀i∈(. Second, with the
integerα values obtained from theprevious step, one can
show that the objective does not decrease by modify-
ing any component of γ to one by appropriately altering
the prices of the neighbors so that their actions do not
change as in Proposition 2.
In comparison with problem Z-MIP with a single

price for each agent, problem Zi-MIP yields potentially
a lower profit for the seller. However, this profit is
guaranteed, whereas, in the previous case, the esti-
mated profit can be far from the realized value if
people fail to exert their externalities on neighbors
(i.e., the model is misspecified). The difference in
profits between both settings can be viewed as the
price paid by the seller to guarantee network exter-
nalities and can be computed efficiently by solving
both settings.

8. Computational Experiments
In this section, we present computational experiments
on simple networks to draw qualitative insights and to
compare various pricing strategies, including the richer
model with incentives from Section 7. We consider
a network with N � 10 agents and a utility model with
K � 2 and Γ � 1.
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8.1. Value of Incorporating Network Externalities
In Figure 1, we plot the optimal prices offered by the
seller under discriminative and uniform pricing strat-
egies, both with andwithout network externalities. The
circles around the markers, whenever present, depict
the fact that the agent decided not to purchase the item
at the offered price (agents 7–9 for uniform price with
network externalities). In this instance, each agent is
connected to exactly three other agents, and we use
gj,i � 1.25 for any connected edge, gi � 3, and c � 2.3

We observe that incorporating the positive exter-
nalities among the agents allows the seller to earn
higher profits. In this particular example, the total
profits are equal to 46.25 (discriminative prices) and
24.5 (uniform price) for the case with network exter-
nalities. In the case without network externalities, the
profits under both uniform and discriminative prices
are equal to 10. This result is expected as each agent’s
willingness to pay increases as the agent’s neighbors
positively affect the agent. The seller can, therefore,
charge higher prices and increase its profits. Figure 1
also shows the added benefit of using a discriminative
pricing strategy relative to a uniform price. When the
firm has the additional flexibility to price discriminate
and offers a different price to each agent in the network,
the total profit can increase significantly.

8.2. Pricing an Influencer
In Figure 2, we present an example in which it is
beneficial for the seller to earn a negative profit (pi < c)
from an influential agent to extract significant positive
profits from the agent’s neighbors. In particular, we
consider a network inwhich agent 5 is a very influential
player with g5,5 being very low (0.075) while g5,j is
sufficiently high (1.38) for the four agents that agent 5

influences. Here, gi,j � 0.75 for any other connected
edge, gi � 1.5R∀i≠ 5, where R � U[1, 2] (a single in-
dependent and identically distributed (i.i.d.) instance is
drawn) and c � 2. In this example, the optimal dis-
criminative price for agent 5 happens to be below cost.
This illustrates the fact that agent 5 has an influential
position in the network, and therefore, the seller should
strongly incentivize this agent. In particular, the opti-
mal algorithm identifies this pattern and captures the
fact that it is profitable to offer a low price to agent 5.
This way, the seller loses a small amount of money
from the influential agent but can extract higher profits
from others.We now consider an alternative strategy in
which the seller decides to remove agent 5 from the
network because of agent 5’s low valuation (this is
equivalent to offering a very large price to agent 5). In
this case, all the optimal prices are decreased, and the
overall profit drops from 63.52 to 55.5. As a result,
one can increase the profit by 14.5% by including
agent 5.

8.3. Value of Incorporating Incentives That
Guarantee Influence

In Figure 3, we compare the optimal solution for dis-
criminative prices to the more general model from
Section 7 in which the seller offers a uniform regular
price (p � 4) and designs discriminative discounts in
exchange for an action. As discussed, if the seller does
not incentivize the agents to influence, it is possible that
some of them would not exert their externalities. The
goal of this experiment is to quantify the impact of
having incentives. In this instance, each agent is con-
nected to three other agents with gj,i � 0.75 for any
connected edge and gi � 1.5R, where R � U[1, 4.5]
(a single i.i.d. instance is drawn). We assume that ti �
U[0, 1]∀ i≠ 1 (single i.i.d. drawn), t1 � 6.9, and c � 1.

Figure 1. (Color online) Value of Incorporating Network
Externalities for Discriminative and Uniform Pricing
Strategies

Figure 2. (Color online) Centrality Effect: Losing Money on
an Influential Agent
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We observe that the profit using the model without
incentives is equal to 27.15. This profit is not guaran-
teed because some agents may not influence their peers
(i.e., the model may be misspecified). In particular, in
this example, suppose agents 5 and 10 who buy at the
full price do not influence their neighbors. Agent 1 ends
up not purchasing the item and, consequently, does not
influence agent 1’s neighbors either. Finally, it happens
that only agents 2, 5, and 10 buy the item, yielding
a profit of nine as opposed to 27.15. As a result, the
earlier model predicts a profit value that is significantly
higher than the realized profit. On the other hand, in
the model with incentives that guarantee influence, the
total profit is equal to 20.85. In this case, agent 1 does
not purchase the item, and agents 5 and 10 do not
influence anyone, but other agents do. Observe that
this is lower than 27.15 but significantly higher than
nine. Therefore, the model with incentives provides the
seller with the flexibility of using prices together with
incentives that result in a higher degree of confidence
on the predicted profit value.

8.4. Symmetric Agents with Asymmetric Incentives
In Figure 4, we present a setting with symmetric agents
who receive asymmetric incentives to influence their
neighbors. In this instance, each agent has the same
number of neighbors and the same self- and cross-
valuations. In particular, we consider a complete graph
with gi � 1.3 and gi,j � 0.3, a cost to influence ti � 2.2,
and c � 0.2. We compute the optimal discriminative
prices, which happen to be three for everyone, and
compare with the case in which the seller designs in-
centives to guarantee influence by offering two prices
(using problem Zi-MIP). Interestingly, the optimal
solution for the model with incentives is not symmetric
despite the fact that all agents are homogenous.

Indeed, it is sufficient to incentivize any six out of 10
agents in the network (no matter which group of six).
These six agents receive a targeted discount to exert
network effects on their peers that purchase at the
full price.

8.5. Effect of Network Topology on Optimal Prices
In Figure 5, we consider different network topologies
and compare the optimal discriminative prices and the
corresponding profits. In all the scenarios, gi � 1.5R,
where R � U[1, 2] (a single i.i.d. instance is drawn),
gi,j � 0.75 when agent i influences agent j and zero
otherwise, and c � 2. For each network topology, we
solve the optimal discriminative prices using the Z-MIP
relaxation. We plot the optimal price vector for the
different networks in Figure 5. We observe that, in our
example, all agents purchase the item. In the complete
graph, all nodes are connected to each other, and hence,
the profits are the highest (70.15). In the intermediate
topology in which each agent has three neighbors, the
total profits are equal to 22.45. The cycle graph is
a network in which the nodes are connected in a cir-
cular fashion and each agent has one ingoing and one
outgoing edge. In this case, the total profits are equal to
8.95. Star 1 and star 2 are star graphs with a central
agent being agent 5. In star 1, agent 5 influences all
other agents, and in star 2, agent 5 is influenced by all
others. In both cases, the profits are equal to 8.2 as the
total valuations in the system are identical. In star 1,
agent 5 receives a small discount to influence so that the
prices offered to other buyers are slightly higher. In star
2, the prices of all agents but agent 5 are slightly lower
so that the seller can charge a high price to agent 5. As
we can see, the prices and profits increase with the
number of edges in the graph. Indeed, each additional
edge corresponds to an agent increasing another agent’s

Figure 3. (Color online) Value of Incorporating Incentives
That Guarantee Influence

Figure 4. (Color online) Symmetric Graph with
Asymmetric Incentives: With and Without Incentives
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willingness to pay, and therefore, the more connected
the graph is, the higher the profit.

9. Conclusions
In this paper, we study an optimal pricing model for
a firm that sells an indivisible good to agents embedded
in a social network. We assume that agents interact and
positively influence each other’s purchasing decisions
(via network externalities). We propose a broad class of
nonlinear utility models that explicitly capture exter-
nalities from subsets of agents (communities or groups)
and allow a threshold on the number of agents needed
to trigger the externality effect.

We model the problem as a two-stage game and
reformulate it as an MIP with linear constraints. We
view this MIP as an operational pricing tool that holds
for general externalities (positive or negative) and that
can incorporate various pricing business rules. For the
case of discriminative and uniform pricing strategies
(under positive externalities), we present efficient
methods to optimally solve the MIP using its LP re-
laxation. We observe that the price of a buyer in the
optimal discriminative solution can be expressed as the
sum of its own value and a markup term corresponding
to externalities from the network of agents who buy the
item. The gain from network externalities comes from
two types of customers: high-valued customers and low-
valued customers who are influential and can some-
times be offered a price below cost. In addition, when
comparing linear to nonlinear utility models, we show
that, as wemove from a linear model to a nonlinear one,
additional agents will buy and buyers will pay a higher
price, and hence, this induces higher profits. We also
convey that a larger threshold on the minimum number
of neighbors results in a smaller number of buyers and
decreases the seller’s profit. Hence, our analysis suggests

that incorporating nonlinearity effects in the utility
model significantly modifies the pricing decisions.
We extend our pricing model and results to the case

in which the seller can design both prices and incentives
to guarantee influence. This extension is important as,
in general, agents that buy do not necessarily exert
network externalities on their peers. The seller can use
incentives in exchange for an action, such as a wall post
or a review to guarantee network externality effects.
Finally, we present computational experiments to high-
light the benefits of incorporating network externalities
and to compare the different pricing strategies.
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Endnotes
1 In the context of this paper, the term “influence” refers to exerting
network externalities (or network effects).
2We refer to general externalities to describe the setting that includes
both positive and negative externalities among agents in the network.
3 In Figure 1, the exact network structure is such that agents 2, 3, and 10
have four influencers; agents 1, 2, 5, and 6 have three influencers; agents
7 and 9 have two influencers; and finally, agent 3 has one influencer.
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