
e-companion to Cohen et al.: The Impact of Linear Optimization on Promotion Planning ec1

EC.1. Proof of Lemma 1

Proof. 1. Since the proof may not be easy to follow, we present it together with a concrete

example to illustrate the different steps. Let T = 6, q0 = 7, A = {(1,1), (3,3)}, B = {(3,3)}
and (t′, k′) = (5,5). We denote by POPt(pA) the profits at time t for the price vector pA.

In addition, we further assume that: δ5 = g4(1) = 0.8, δ6 = g5(1) = 0.9. We next define the

following quantities:

at = POPt(pA) = POPt(1,7,3,7,7,7)

a′t = POPt(pA∪(t′,k′)) = POPt(1,7,3,7,5,7)

bt = POPt(pB) = POPt(7,7,3,7,7,7)

b′t = POPt(pB∪(t′,k′)) = POPt(7,7,3,7,5,7).

For each time t, we define the following coefficient:

δt =
g1((pA)t−1) · g2((pA)t−2) · · ·gt−1((pA)1)

g1((pB)t−1) · g2((pB)t−2) · · ·gt−1((pB)1)
.

δt represents the multiplicative reduction in demand at time t from the promotions present in

the set A but not in B. Observe that from Assumption 4, we have o≤ δt′ ≤ δt′+1 ≤ · · · ≤ δT ≤ 1.

In addition, we have: at = δtbt, a
′
t = δtb

′
t. Observe also that condition (14) is equivalent to:

T∑
t=1

a′t−
T∑
t=1

at ≥ 0. (EC.1)

Note that at = a′t for all t < t′. In the example, we have a1 = a′1, . . . , a4 = a′4 as the prices in

periods 1-4 are the same. Therefore, (EC.1) becomes:
∑T

t=t′ a
′
t ≥
∑T

t=t′ at. In the example, we

obtain: a′5 + a′6 ≥ a5 + a6. Note that a′t ≤ at for any t > t′. In the example, a′t has a promotion

at t= 5. However, there is no promotion in at at t= 5 and therefore, the objective at t= 6 for

a′t is lower than the one in at, i.e., a′6 ≤ a6. This implies that:

a′t′ − at′ ≥
T∑

t=t′+1

(at− a′t)≥ 0.

In the example, this translates to a′5−a5 ≥ a6−a′6 ≥ 0. We next multiply the left hand side by

1/δt′ and the terms in the right hand side by 1/δt (recall that 1/δt′ ≥ 1/δt for t > t′). Therefore,

we obtain:

b′t′ − bt′ =
a′t′ − at′
δt′

≥
T∑

t=t′+1

(at− a′t
δt

)
=

T∑
t=t′+1

(
bt− b′t

)
≥ 0.
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In the example, this translates to: b′5− b5 =
a′5−a5
0.8
≥ a6−a′6

0.9
= b6− b′6 ≥ 0. Recall that our goal is

to show equation (15), or alternatively:
∑T

t=1 a
′
t−
∑T

t=1 at ≤
∑T

t=1 b
′
t−
∑T

t=1 bt. Note that this

is equivalent to:
∑T

t=t′(a
′
t− at) =

∑T

t=t′ δt(b
′
t− bt)≤

∑T

t=t′(b
′
t− bt). By rearranging the terms,

we obtain:

T∑
t=t′+1

(1− δt)(bt− b′t)≤ (1− δt′)(b′t′ − bt′).

In the example, this would be: 0.1(b6−b′6)≤ 0.2(b′5−b5). Finally, note that the above inequality

is true because of the following:

T∑
t=t′+1

(1− δt)(bt− b′t)≤
T∑

t=t′+1

(1− δt′)(bt− b′t)≤ (1− δt′)(b′t′ − bt′).

In the example, this is clear because: 0.1(b6− b′6)≤ 0.2(b6− b′6)≤ 0.2(b′5− b5). �

2. We first introduce the following notation. Let γPOP be an optimal solution to the POP and

{(t1, k1), . . . , (tn, kn)} the set of promotions in γPOP . For any subset B ⊂ {1,2, . . . , n}, we

define: γ(B) = γ({(ti, ki) : i ∈ B}). For example, let the price ladder be {q0 = 5, q1 = 4} and

γPOP = γ({(1,1), (3,1), (5,1)}). Then, γ({1,3}) = γ({(1,1), (5,1)}).
Note that one can write the following telescoping sum:

POP (γPOP ) = POP (γ{1}) +
n−1∑
m=1

[
POP (γ{1, . . . ,m+ 1})−POP (γ{1, . . . ,m})

]
.

Based on Proposition EC.1 below, we have for each m = 1,2, . . . n − 1: POP (γ{1, . . . ,m +

1})− POP (γ{1, . . . ,m}) ≥ 0. By applying the submodularity property from Lemma 1 part

1, we obtain: 0≤ POP (γ{1, . . . ,m+ 1})−POP (γ{1, . . . ,m})≤ POP (γ{m+ 1})−POP (γ0).

Therefore, we have:

POP (γPOP ) = POP (γ{1}) +
n−1∑
m=1

[
POP (γ{1, . . . ,m+ 1})−POP (γ{1, . . . ,m})

]
≤ POP (γ0) +

n∑
m=1

[
POP (γ{m})−POP (γ0)

]
=LP (γPOP ).

Proposition EC.1. Let n≥ 2 be an integer and γPOP an optimal solution to the POP with

n promotions. Then, POP (γ{1, . . . ,m+ 1})−POP (γ{1, . . . ,m})≥ 0 for m= 1,2, . . . , n− 1.

Proof. The proof proceeds by induction on the number of promotions. We first show that

the claim is true for the base case i.e., n= 2. By the optimality of γPOP = γ{1,2}, we have:

0≤ POP (γ{1,2})−POP (γ{1,2}).



e-companion to Cohen et al.: The Impact of Linear Optimization on Promotion Planning ec3

Next, we assume that the claim is true for n and show its correctness for n+ 1. Let POP’

denote the POP problem with the additional constraint that promotion (t1, k1) is used, i.e.,

pt1 = qk1 . One can see that the set of promotions {(t2, k2), . . . , (tn+1, kn+1)} is an optimal

solution to POP’ with n promotions. Therefore, by using the induction hypothesis, we have:

POP ′(γ{2, . . . , n,n+ 1}) −POP ′(γ{2, . . . , n}) ≥ 0
...

...
...

POP ′(γ{2,3}) −POP ′(γ{2}) ≥ 0

Equivalently, in terms of the POP:

POP (γ{1, . . . , n,n+ 1}) −POP (γ{1, . . . , n}) ≥ 0
...

...
...

POP (γ{1,2,3}) −POP (γ{1,2}) ≥ 0

Therefore, it remains to show that: POP (γ{1,2}) − POP (γ{1}) ≥ 0. We next prove the

following chain of inequalities:

POP (γ{1,2})−POP (γ{1})≥ POP (γ{1,2,3})−POP (γ{1,3})

≥ POP (γ{1,2,3,4})−POP (γ{1,3,4})
...

≥ POP (γ{1, . . . , n,n+ 1})−POP (γ{1,3,4, . . . , n,n+ 1}).

(EC.2)

By using the induction hypothesis together with the submodularity property from Lemma 1

part 1, we obtain for each m= 2,3, . . . , n− 1:

POP (γ{1, . . . ,m,m+ 1})−POP (γ{1, . . . ,m})≤

POP (γ{1,3,4, . . . ,m,m+ 1})−POP (γ{1,3,4, . . . ,m}).

Finally, from the optimality of γ{1, . . . , n,n+ 1} for the POP, we have: POP (γ{1, . . . , n,n+

1})−POP (γ{1, . . . , n})≥ 0. By rearranging the terms in the above equations, one can derive

the chain of inequalities in (EC.2) and this concludes the proof. �

EC.2. Proof of Proposition 3

Proof. We denote the set of promotions in the price vector p by: p = p{(t1, qt1), . . . , (tN , q
tN )},

where N is the number of promotions. The price vector pn = p{(tn, qtn)} for each n = 1, . . . ,N

denotes the single promotion price at time tn (no promotion at the remaining periods). By con-

vention, let us denote n = 0 to be the regular price only vector p0 = (q0, . . . , q0). We denote the

cumulative POP objective in periods [u, v) when using pn by:

xn[u,v) = POP (p{(tn, qtn)})[u,v) =
v−1∑
t=u

pt{(tn, qtn)}dt(pt{(tn, qtn)}).
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Note that he LP objective can be written as: LP (p) = x0
[1,T ] +

∑N

n=1

(
xn[1,T ]−x0

[1,T ]

)
.

Since pn and p0 do not promote before tn, we have xn[1,tn) = x0
[1,tn)

. In addition, since pn promotes

at t = tn and p0 does not, the vector pn yields a lower objective for the periods after tn, i.e.,

xn[tn+1,T ] ≤ x0
[tn+1,T ]. Therefore, we obtain for each n= 1, . . . ,N :

xn[1,T ]−x0
[1,T ] = xn[1,tn) +xn[tn,tn+1)

+xn[tn+1,T ]−x0
[1,tn)

−x0
[tn,tn+1)

−x0
[tn+1,T ] ≤ xn[tn,tn+1)

−x0
[tn,tn+1)

.

Therefore: LP (p)≤UB = x0
[1,T ] +

∑N

n=1

(
xn[tn,tn+1)

−x0
[tn,tn+1)

)
= x0

[1,t1)
+
∑N

n=1 x
n
[tn,tn+1)

.

Let UBt denote the value of UB at time t. Specifically, if t ∈ [tn, tn+1), then UBt = xnt . We

can write for any feasible price vector p: POP (p) =
∑T

t=1 atUBt, where at is the decrease in

demand at time t due to the past promotions in p. In particular, if tn < t ≤ tn+1, then: at =

gt−t1(qt1)gt−t2(qt2) · · ·gt−tn(qtn). Since 0≤ R ≤ at ≤ 1, we obtain: R ·LP (p)≤ R ·UB ≤ POP (p).

�

EC.3. Proofs of Tightness for Multiplicative Demand

1. Lower bound

Proof. In the case when S ≥M , we know from Proposition 1 that the LP approximation

is exact. Therefore, the result holds in this case.

We next consider that S < M and construct an instance of the POP as well as a price

vector p∗. We then show that this price vector p∗ is optimal for both the POP and the LP

approximation.

Let T =L(M + 1) and let us define the following price vector:

p∗ =
(
qK , q0, . . . , q0︸ ︷︷ ︸

M times

, qK , q0, . . . , q0︸ ︷︷ ︸
M times

, . . . , qK , q0, . . . , q0︸ ︷︷ ︸
M times

)
.

Let U = {1, (M + 1) + 1,2(M + 1) + 1, . . . , (L− 1)(M + 1) + 1} denote the set of promotion

periods in p∗. We choose the demand functions ft to be:

ft(pt) =

{
Z/qK if t∈ U and pt = qK ,

1/q0 otherwise,

where:

Y = 1 +
M∑
m=1

(1− gm(qK)),

Z = (M + 2)Y.

We define all the costs to be zero, i.e., ct = 0,∀t= 1, . . . , T . We prove the proposition by the

following steps:
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Step 1: We show that p∗ is an optimal LP solution.

Step 2: We show that there exists an optimal POP solution with promotions only during periods

t∈ U .

Step 3: We show that if p promotes only during periods t∈ U , then POP (p)≤ POP (p∗).

By combining steps 2 and 3, we conclude that p∗ is an optimal POP solution. Consequently,

POP (pPOP ) = POP (pLP ), implying that the lower bound is tight.

Proof of Step 1. By definition, we have: POP (p{(t,K)}) = POP (p0) + Z − Y for t ∈ U .

Therefore the LP coefficients as defined in (6) are given by:

bkt =

{
Z −Y if t∈ U , k=K,

≤ 0 otherwise.

Any LP optimal solution selects at most L of γkt , for k = 1, . . . ,K to be 1. Consequently, the

optimal LP objective is bounded above by T +L(Z −Y ). In fact, the following γLP achieves

this bound and is therefore optimal:

(γLP )kt =


1 if t∈ U , k=K

1 if t /∈ U , k= 0

0 otherwise

We then conclude that pLP = p∗ is an optimal LP solution.

Proof of Step 2. Consider any feasible price vector p and let A be the set of promotions

in p. We next show that POP (p) ≤ POP (p∗) so that p∗ is an optimal POP solution. If p

uses the promotion pt = qk during a period t /∈ U , then we can consider the reduced set of

promotions B=A\{(t, k)}. Note that the promotion (t, k) does not increase the profit at time

t. Indeed, decreasing the price pt will not increase the profit at time t since ft(pt) = 1/q0 for

all pt, and potentially will reduce the profit in future periods t+ 1, . . . , t+M . Thus, removing

the promotion (t, k) increases the total profit, that is POP (γ(A))≤ POP (γ(B)) .By applying

this procedure repeatedly, one can reach a price vector with only promotions in periods t∈ U
that achieves a profit at least equal to POP (p). In other words, there exists an optimal POP

solution with promotions only during periods t∈ U .

Proof of Step 3. Let p be a price vector that only contains promotions during periods t∈ U .

Let n be the number of periods t in p such that pt = qK (n≤ L because U is composed of L

periods). Note that all the successive promotions in U are separated by at least M periods so

that each pair of promotions of p does not interact. Therefore, the profit of p is given by:

POP (p) = POP (p0) +n(Z −Y )≤ POP (p0) +L(Z −Y ).

From the definition of p∗, we have that POP (p∗) = POP (p0) +L(Z − Y ). Indeed, each pro-

motion (t,K) of p∗ results in an increase in profit of Z − Y , and each pair of promotions of
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p∗ is separated by at least M periods so that there is no interaction between promotions.

Consequently, p∗ is an optimal POP solution and the lower bound is tight. �

2. Upper bound

Proof. Let us denote the bound with n promotions by:

Rn =
n−1∏
i=1

gi(S+1)(q
K), (EC.3)

when R0 = 1 by convention. We can also define the following limit:

R∞ = lim
n→∞

Rn.

Note that gm(qK)≤ 1 so that Rn is non-increasing with respect to n. Note also that gm(qK) = 1

for m>M so that RM+1 =RM+2 = · · ·=R∞, i.e., the sequence Rn converges.

In the case when S ≥M , we know from Proposition 1 that the LP approximation is exact.

We also know from (EC.3) that Rn = 1 for all n. Therefore, the result holds in this case.

We next consider that S <M and define the following sequence of problems:

POP n = POP ({qk}Kk=0,{fnt }Tnt=1,{ct}Tnt=1,{gm}Mm=1,Ln, S),

where {qk}Kk=0,{gm}Mm=1, S are given parameters and the costs ct = 0. In addition, Ln = n, and

Tn = n(M + 1). We choose the functions fnt to be equal:

fnt (pt) =

{
Z/qK if 1≤ t≤LM + 1 and pt = qK ,

1/q0 otherwise.

where,

Y = 1 +
M∑
m=1

(1− gm(qK)),

Z = 100Y n.

We prove the proposition by the following steps:

Step 1: We show that the following price vector is an optimal LP solution:

pLP =
(
qK , q0, . . . , q0︸ ︷︷ ︸

S times

, qK , q0, . . . , q0︸ ︷︷ ︸
S times

, . . . , qK , q0, . . . , q0︸ ︷︷ ︸
T−(L−1)(S+1)−1 times

)
.

Step 2: We show that:

POP n(pLPn )≤ T −L+Z(R1 + · · ·+Rn).

Step 3: We show the following lower bound for the optimal profit: POP n(pPOPn )≥ nZ.

Step 4: We finally prove the convergence of the following limit, implying the desired result:

lim
n→∞

POPn(pPOPn )

POPn(pLPn )
=

1

R∞
.
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Proof of Step 1. Based on the above definitions, we have: POP (p{(t,K)}) = POP (p0) +

Z −Y for 1≤ t≤LM + 1. Therefore, the LP coefficients are given by:

bkt =

{
Z −Y if 1≤ t≤LM + 1, k=K,

≤ 0 otherwise.

Let U = {1, S+ 1,2S+ 1, . . . ,LS+ 1} denote the set of promotion periods in pLP .

Any LP optimal solution selects at most L of γkt , for k= 1, . . . ,K to be 1. Consequently, the

optimal LP objective is bounded above by T +L(Z −Y ). In fact, the following γLP achieves

this bound and is therefore optimal:

(γLP )kt =


1 if t∈ U , k=K

1 if t /∈ U , k= 0

0 otherwise

Therefore, we conclude that the price vector pLP is an optimal LP solution.

Proof of Step 2. One can see that the profit induced by the i-th promotion of pLPL (at time

t= (i− 1)S + 1) is RiZ due to the effect of the promotions 1,2, . . . , (i− 1). In addition, the

profit from each non-promotion period is bounded above by 1. We obtain:

POPn(γLPn )≤ T −L+Z(R1 +R2 + · · ·+Rn).

Proof of Step 3. Consider the following price vector:

p=
(
qK , q0, . . . , q0︸ ︷︷ ︸

M times

, qK , q0, . . . , q0︸ ︷︷ ︸
M times

, . . . , qK , q0, . . . , q0︸ ︷︷ ︸
M times

)
.

Note that p is feasible for POPn. Note that all the successive promotions are separated by at

least M periods so that each pair of promotions of p does not interact. Therefore, the profit

induced by the i-th promotion in p (at time t= (i− 1)M + 1) is Z. As a result, we obtain the

following lower bound for the POP profit of p:

POPn(p)≥ nZ.

This also provides us a lower bound for the optimal POP profit:

POPn(pPOPn )≥ POPn(p)≥ nZ.

Proof of Step 4. We show that 1
R∞

is both a lower and upper bound of the limit. First,

using Theorem 1 for POP n, we have:

POP n(pPOPn )

POP n(pLPn )
≤ 1

Rn

.
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By taking the limit when n→∞ on both sides:

lim
n→∞

POP n(pPOPn )

POP n(pLPn )
≤ lim

n→∞

1

Rn

=
1

R∞
.

By using Steps 2 and 3, we obtain:

lim
n→∞

POP n(pPOPn )

POP n(pLPn )
≥ lim

n→∞

n · 100nY

nM + 100nY (R1 +R2 + · · ·+Rn)

= lim
n→∞

1
M

100nY
+

R1+R2+···+Rn
n

=
1

R∞
.

In the last equality, we have used the fact that if {an}∞n=1 converges to a finite limit a, then

{∑n

i=1 ai/n}∞n=1 also converges to a.

EC.4. Illustrating the bounds

We show some examples that illustrate the behavior and quality of the bounds we have developed

in the previous section. Recall that solving the POP can be hard in practice. Therefore, one can

instead implement the LP solution. The resulting profit is then equal to POP (γLP ), whereas

in theory, we could have obtained a maximum profit equal to the optimal POP profits denoted

by POP (γPOP ). In our numerical experiments, we examine the gap between POP (γLP ) and

POP (γPOP ) as a function of various parameters of the problem. In addition, we compare the ratio

between POP (γPOP ) and POP (γLP ) relative to the lower bound in Theorem 1 equal to 1/R. We

also present an additional curve labeled “Do Nothing” as a benchmark (for which the no-promotion

price is used at each time).

As we previously noted, the bounds we developed depend on four different parameters: the

number of separating periods S, the number of promotions allowed L, the value of the minimum

element of the price ladder qK and the effect of past prices (i.e., the value of the memory parameter

M as well as the magnitude of the functions gk) . Below, we study the effect of each of these factors

by varying them one at a time while the others are set to their worst case value.

All the figures below lead us to the following two observations: a) The LP solution achieves a

profit that is close to the optimal profit. b) In particular, the actual optimality gap (between the

POP objective at optimality versus evaluated at the LP approximation solution) seems to be of

the order of 1-2 % and is smaller than the upper bound which we developed in Theorem 1.

In Figures EC.1, EC.2 and EC.3, the demand model we use is given by: logdt(p) = log(10)−
4 log pt + 0.5 log pt−1 + 0.3 log pt−2 + 0.2 log pt−3 + 0.1 log pt−4. In all the following tests, we decided

to select M = 4. Using the data we have (for several stores and four categories of products), in our

demand estimation ,the memory parameter M was always at most equal to 4. This value was not

chosen arbitrarily and was estimated from data and tested out of sample. We tried to incorporate
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all the past prices (i.e., pt−1, pt−2, . . . , pt−T ) in the regression model and observed that only the 4

first ones (or sometimes less than 4) were statistically significant, i.e., the p-value was less than 0.05

(similarly as in Table 2 in Section 7 of the paper). We then removed the non-significant observable

variables and re-estimated the model parameters. In addition, we selected the minimal price qK to

be equal to 0.5, as it was the minimal value we observed in all our data sets.

Figure EC.1 Effect of varying the separating parameter S.
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Note. Example parameters: L = 3,Q= {1,0.9,0.8,0.7,0.6}.

Dependence on separating periods: In Figure EC.1, we vary the number of separating peri-

ods S from 1 to 16 (remember that the horizon is T = 35 weeks). We make the following obser-

vations: a) As one would expect from Proposition 1, the LP approximation coincides with the

optimal POP solution when S ≥M = 4, i.e., S ≥ 4. b) Our intuition suggests that as S increases,

the upper bound 1/R becomes better. Indeed, the promotions are further apart in time, reducing

the interaction between promotions and improving the quality of the LP approximation. c) For

values of S ≥ 1, the upper bound is at most 23% in this example. In practice, typically the number

of separating periods is at least 1 but often 2-4 weeks.

Dependence on the number of promotions allowed: In Figure EC.2, we vary the number

of promotions allowed L between 0 and 8. We make the following observations: a) As one would

expect from Proposition 1, the LP approximation coincides with the optimal POP solution when

L= 1 (and of course L= 0). b) The upper bound is at most 23% in this example. Note that from

the definition of R in equation (EC.3) of Theorem 1, 1/R increases with L up to L= 3. Indeed,

since S = 1 and M = 4, the first promotion can never interact with the fourth promotion or with

further ones.
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Figure EC.2 Effect of varying the number of promotions allowed L.

0 2 4 6 8

100

120

Promotion Limit

P
ro

fi
ts

POP (γPOP ) POP (γLP ) Do Nothing

(a) Profits

0 2 4 6 8

1

1.1

1.2

Promotion Limit

P
ro

fi
t

R
at

io

POP (γPOP )/POP (γLP ) 1/R

(b) Profit ratio

Note. Example parameters: S = 1,Q= {1,0.9,0.8,0.7,0.6}.

Figure EC.3 Effect of varying the minimum price qK
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Note. Example parameters: L = 3, S = 1.

Dependence on the minimal element of the price ladder: In Figure EC.3, we vary the

(normalized) minimum promotion price qK between 0.5 and 1. We make the following observations:

a) As one would expect the LP approximation coincides with the optimal POP solution when

qK = 1, i.e., the promotion price is equal to the regular price so that promotions do not exist.

b) The upper bound is 33% in this example for the case where a 50% promotion is allowed. If we

restrict to a maximum of 30% promotion price, the bound becomes 14%. Using the definition of R

from (EC.3), 1/R decreases with qK .
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Figure EC.4 Effect of varying the memory parameter M
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Note. Example parameters: logdt(p) = log(10)− 4 log pt + 0.2 log pt−1 + 0.2 log pt−2 + · · ·+ 0.2 log pt−M ; L = 3, S = 1.

Dependence on the length of the memory: In Figure EC.4, we vary the memory of cos-

tumers with respect to past prices, M between 0 and 6. Note that in this example, we have chosen

the functions g1, g2, . . . , gM to be equal. This choice can be seen as the “worst case” so that past

prices have a uniformly strong effect on current demand. We make the following observations:

a) As one would expect from Proposition 1, the LP approximation coincides with the optimal POP

solution when S ≥M , i.e., M ≤ 1. b) The upper bound is 23% in this example. Using the definition

of R from (EC.3), 1/R increases with M .

EC.5. Additive Demand

For some products, one may want to consider a demand model where the effect of past prices on

current demand is additive. Therefore, we propose and study a class of additive demand functions.

Suppose that past prices have an additive effect on current demand, so that the demand at time t

is given by:

dt = ft(pt) + g1(pt−1) + g2(pt−2) + · · ·+ gM(pt−M). (EC.4)

As we verify in Section 7 from the actual data, it is reasonable to assume the following structure

for the functions gk.

Assumption EC.1. 1. The reduction effect is non-positive, i.e., gk(p)≤ 0.

2. Deeper promotions result in larger reduction in future demand, i.e., p≤ q implies that gk(p)≤
gk(q)≤ gk(q0) = 0.

3. The reduction effect is non-increasing with time since after the promotion: gk is non-decreasing

with respect to k, i.e., gk(p)≤ gk+1(p).
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Note that the above assumptions are analogous to Assumption 4 for the multiplicative model.

We assume that for k >M , gk(p) = 0 ∀p.

Remark. Equation (EC.4) represents a general class of demand functions, which admits as special

cases several demand models used in practice. For example, the demand model used by Fibich

et al. (2003) with symmetric reference price effects is given by:

dt = a− δpt−φ(pt− rt). (EC.5)

Equation (EC.5) can be rewritten as: dt = a− (δ + φ)pt + φrt. Here, rt represents the reference

price at time t that consumers are forming based on their memory of past prices. The parameter φ

denotes the price sensitivity with respect to the reference price, whereas δ+φ represents the price

sensitivity with respect to the current price. Note that the reference price at time t is given by:

rt = (1− θ)pt−1 + θrt−1,

and can be rewritten in terms of past prices as follows:

rt = (1− θ)pt−1 + θ(1− θ)pt−2 + θ2(1− θ)pt−3 + · · ·= (1− θ)
T∑
k=1

θk−1pt−k,

where 0≤ θ < 1 denotes the memory of the consumers towards past prices. Therefore, the current

demand from equation (EC.5) can be written as follows in terms of the current and past prices:

dt = a− (δ+φ)pt +
M=T∑
k=1

(1− θ)φ θk−1pt−k. (EC.6)

One can see that equation (EC.6) falls under the model we proposed in (EC.4), when the functions

gk are chosen appropriately and the memory parameter M goes to infinity. In addition, the additive

model from (EC.4) provides more flexibility in choosing the suitable memory parameter using data

and allows us to give different weights depending on how far is the past promotion from the current

time period.

Next, we present upper and lower bounds on the performance guarantee of the LP approximation

relative to the optimal POP solution for the demand model in (EC.4).

EC.5.1. Bounds on Quality of Approximation

Theorem EC.1. Let γPOP be an optimal solution to (POP) and let γLP be an optimal solution

to the LP approximation. Then:

1≤ POP (γPOP )

POP (γLP )
≤ 1 +

R

POP (γLP )
. (EC.7)
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where R is defined by:

R=
L̃∑
i=1

L̃∑
j=i+1

(qK − q0)g(j−i)(S+1)(q
K). (EC.8)

Proof. Note that the lower bound follows directly from the feasibility of γLP to the POP. We

next prove the upper bound by showing the following chain of inequalities:

LP (γLP )
(i)

≤ POP (γLP )
(ii)

≤ POP (γPOP )
(iii)

≤ LP (γPOP ) +R
(iv)

≤ LP (γLP ) +R. (EC.9)

Inequalities (i) and (iii) follow from Proiposition EC.2 below. Inequality (ii) follows from the

optimality of γPOP and inequality (iv) follows from the optimality of γLP . Therefore, we obtain:

1 =
POP (γLP )

POP (γLP )
≤ POP (γPOP )

POP (γLP )
≤ LP (γLP ) +R

POP (γLP )
≤ POP (γLP ) +R

POP (γLP )
= 1 +

R

POP (γLP )
. �

The proof of Theorem EC.1 relies on the following result.

Proposition EC.2. For a given promotion profile γ, with the promotion set:

{(t1, k1), . . . , (tn, kn)}, the POP profits can be written as follows:

POP (γ{(t1,k1),...,(tn,kn)}) =LP (γ{(t1,k1),...,(tn,kn)}) +ER(γ{(t1,k1),...,(tn,kn)}). (EC.10)

Here, ER(γ{(t1,k1),...,(tn,kn)}) represents the error term between the POP and the LP objectives and

is given by:

ER(γ{(t1,k1),...,(tn,kn)}) =
n∑
i=1

n∑
j=i+1

(qkj − q0)gtj−ti(qki). (EC.11)

Consequently, for any feasible promotion profile γ, the POP profits satisfies:

LP (γ)≤ POP (γ)≤LP (γ) +R.

The proof of Proposition EC.2 can be found in Appendix EC.6. Proposition EC.2 states that the

POP profits can be written as the sum of the LP approximation evaluated at the same promotion

profile, plus some given error term that depends on the price differences and the functions gk(·).
We next show that the POP profits are supermodular in promotions.

Corollary EC.1 (Supermodularity of POP profits in promotions).

Let A = {(t1, k1), . . . , (tN , kN)} be a set of promotions with 1 ≤ t1 < t2 < · · · < tn (n ≤ L) and let

B ⊂ A. Consider a new promotion (t′, k′) where t′ /∈ {tn}Nn=1. Then, the new promotion (t′, k′)

yields a greater marginal increase in profits when added to A than when added to B, that is:

POP (γA∪{(t′,k′)})−POP (γA)≥ POP (γB∪{(t′,k′)})−POP (γB). (EC.12)
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Proof. We first introduce the following definition. For two promotions (t, k) and (u, `) with

t 6= u, we define the interaction function:

φ((t, k), (u, `)) =

{
(q`− q0)gu−t(q`) if u> t;

(qk− q0)gt−u(qk) if t > u.

Since qk, q` ≤ q0, and gm(p)≤ 0 for all m and p, we have φ((t, k), (u, `))≥ 0. Observe that:

POP (γ{(t,k)}) = POP (γ0) + bkt ,

where bkt are defined in (6) and represent the unilateral deviations in total profits by applying

a single promotion at time t with price qk. Similarly, we have: POP (γ{(u,l)}) = POP (γ0) + b`u.

Therefore, we obtain:

POP (γ{(t,k),(u,`)}) = POP (γ{(t,k)}) +POP (γ{(u,`)})−POP (γ0) +φ((t, k), (u, `)).

In other words, the function φ((t, k), (u, `)) compensates for the interaction term when we do both

promotions (t, k) and (u, `) simultaneously. From equation (EC.10) in Proposition EC.2, we obtain:

POP (γA) =LP (γA) +
∑

(t,k),(u,`)∈A:t<u

(q`− q0)gu−t(q`)

POP (γA∪{(t′,k′)}) =LP (γA∪{(t′,k′)}) +
∑

(t,k),(u,`)∈A∪{(t′,k′)}:t<u

(q`− q0)gu−t(q`),

and similarly for the set B. By using the definition of the LP objective function:

LP (γ{(t1,k1),...,(tn,kn)}) = POP (γ0) +
n∑
i=1

(
POP (γ{ti,ki})−POP (γ0)

)
,

we obtain: LP (γA∪{(t′,k′)}) − LP (γA) = POP (γ ′) − POP (γ0) and: LP (γB∪{(t′,k′)}) − LP (γB) =

POP (γ ′)−POP (γ0), where we define γ ′ = γ{(t′,k′)}. One can now obtain the following relations:

POP (γA∪{(t′,k′)})−POP (γA) = POP (γ ′)−POP (γ0) +
∑

(t,k)∈A

φ((t, k), (t′, k′)),

POP (γB∪{(t′,k′)})−POP (γB) = POP (γ ′)−POP (γ0) +
∑

(t,k)∈B

φ((t, k), (t′, k′)).

Therefore, we obtain:

(
POP (γA∪{(t′,k′)})−POP (γA)

)
−
(
POP (γB∪{(t′,k′)})−POP (γB)

)
=

∑
(t,k)∈A\B

φ((t, k), (t′, k′))≥ 0. �
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Corollary EC.1 states that for an additive demand model as in (EC.4), the POP profits are

supermodular in promotions. Note that unlike in the multiplicative case, the claim is valid for

any set of promotions. Consequently, it supports intuitively the fact that the LP approximation

underestimates the POP objective, i.e., POP (γPOP ) ≥ LP (γPOP ). Note that by considering the

objective (total profits) of problem (POP) as a continuous function of the prices p1, p2, . . . , pT ,

one can equivalently show the supermodularity property by checking the non-negativity of all the

cross-derivatives. We next show that the upper and lower bounds of Theorem EC.1 are tight.

Proposition EC.3 (Tightness of the bounds for additive model).

1. The lower bound in Theorem EC.1 is tight. More precisely, for any given price ladder, L, S

and functions gk, there exist T , costs ct and functions ft such that:

POP (γPOP ) = POP (γLP ).

2. The upper bound in Theorem EC.1 is tight. More precisely, for any given price ladder, L, S

and functions gk, there exist T , costs ct and functions ft such that:

POP (γPOP ) = POP (γLP ) +R.

The proof can be found in Appendix EC.7.

EC.5.2. Illustrating the bounds

In this section, we illustrate the bounds for the additive demand model by varying the different

model parameters. We refer the reader to Section 5.2.2 for a discussion of the plots as a function

of the various parameters since the trends we observe are similar in both the multiplicative and

additive models.

In Figures EC.5, EC.6 and EC.7, the demand model is given by: dt(p) = 30− 50pt + 15pt−1 +

10pt−2 + 5pt−3.

Dependence on separating periods: In Figure EC.5, we vary the number of separating peri-

ods S. We make the following observations: a) As one would expect from Proposition 1, the LP

approximation coincides with the optimal POP solution for S ≥M = 4. b) As expected, as S

increases, the upper bound 1+R/POP (γLP ) decreases. Indeed, the larger is S, the more separated

promotions are and as a result, it reduces the interaction between promotions which are neglected

in the LP approximation. c) For any value of S, the upper bound on the relative optimality gap

(between the POP objective at optimality versus evaluated at the LP approximation solution) is

at most 2.5%, whereas the realized one is less than 1.5%. In practice, typically the number of

separating periods is at least 2.
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Figure EC.5 Effect of varying the separating periods S
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Note. Example parameters: Example parameters: L = 3,Q= {1,0.95,0.90,0.85,0.80,0.75,0.70}.

Figure EC.6 Effect of varying the promotion limit L
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Note. Example parameters: S = 0,Q= {1,0.95,0.90,0.85,0.80,0.75,0.70}.

Dependence on the number of promotions allowed: In Figure EC.6, we vary the number

of promotions allowed L. We make the following observations: a) As one would expect from Propo-

sition 1, the LP approximation coincides with the optimal POP solution for L= 1. b) For L≤ 6

(recall that T = 13), the upper bound on the relative optimality gap is at most 10%. As expected,

the upper bound increases as L increases. This follows from the definition of R in Theorem EC.1.

Unlike the multiplicative case for which R was asymptotically converging as L increases; in the

additive case, R can grow to infinity as L increases.
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Figure EC.7 Effect of varying the minimum price qK
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Note. Example parameters: L = 3, S = 0.

Dependence on the minimal price of the price ladder: In Figure EC.7, we vary the

minimum promotion price qK . We make the following observations: a) As one would expect, the

LP approximation coincides with the optimal POP solution for qK = 1, i.e., the promotion price

is equal to the regular price at all times. b) The upper bound on the relative optimality gap is at

most 2.5%. From the definition of R in Theorem EC.1, one can see that the additive contribution

R increases as qK decreases.

Figure EC.8 Effect of varying the memory M

0 1 2 3 4 5 6

110

120

130

140

Memory

P
ro

fi
ts

POP (γPOP ) POP (γLP ) Do Nothing

(a) Profits

0 1 2 3 4 5 6

1

1.02

1.04

Memory

P
ro

fi
t

R
at

io

POP (γPOP )/POP (γLP ) 1 +R/POP (γLP )

(b) Profit ratio

Note. Example parameters: dt(p) = 30− (20 + 20M)pt + 20pt−1 + 20pt−2 + · · ·+ 20pt−M , L = 3, S = 0.
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Dependence on the length of the memory: In Figure EC.8, we vary the memory parameter

M . Note that in this example, we have chosen equal coefficients for g1, g2, . . . , gM , as a “worst

case” so that past prices have a uniformly strong effect on current demand. We make the following

observations: a) As one would expect from Proposition 1, the LP approximation coincides with

the optimal POP solution for S ≥M , i.e., M = 0. b) The upper bound on the relative optimality

gap is at most 4.5%. From the definition of R in TheoremEC.1, one can see that R increases with

M , until it hits the constraint on the limited number of promotions (in this case is L = 3). In

particular, we have two cases. When M < L, increasing the memory parameter by one unit will

increase R. Indeed, from the definition of R, some of the terms g(j−i)(S+1)(q
K) will switch from zero

to a negative value. When M >L, increasing the memory parameter by one one will not increase

R. In this case, the terms g(j−i)(S+1)(q
K) do not change.

EC.6. Proof of Proposition EC.2

Proof. Without loss of generality, we consider the case with the costs equal to zero, i.e., ct =

0; ∀t. We next show that both sides of equation (EC.10) at each time period t are equal. Let us

define the quantities eit = gti−t(q
ki) for t > ti that capture the demand reduction at time t due to

the earlier promotion qki at time ti. Let LPt and POPt denote the LP approximation and POP

objectives at time t respectively. Consider a price vector of the form: p{(t1,k1),...,(tn,kn)}. The LP

approximation evaluated at this price vector is given by:

LP (p{(t1,k1),...,(tn,kn)}) = POP (p0) +
n∑
i=1

[
qkiPOP (p(ti,ki))−POP (p0)

]
.

The POP objective using the single promotion (ti, ki) is given by:

POP (p(ti,ki)) = q0f1(q
0) + · · ·+ q0fti−1(q

0) + qtifti(q
ki) + q0

[
fti+1(q

0) + eiti+1

]
+ · · ·+ q0

[
fT (q0) + eiT

]
.

In addition, we have: POP (p0) =
∑T

t=1 q
0ft(q

0). We next divide the analysis depending whether a

promotion occurs at time t or not.

Case 1: Time t is not a promotion period, so that t is between two consecutive promotion periods

ti < t< ti+1 (or t is after the last promotion). In this case, we have: POPt = q0
[
ft(q

0)+e1t + · · ·+eit
]
.

The LP objective at time t is given by:

LPt = q0ft(q
0) +

i∑
j=1

(
q0
[
ft(q

0) + ejt
]
− q0ft(q0)

)
= q0

[
ft(q

0) + e1t + · · ·+ eit
]
. (EC.13)

As a result, at each time t without a promotion, we have POPt =LPt and hence equation (EC.10)

is satisfied. We next consider the second case.
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Case 2: Time t is a promotion period, i.e., t= ti for some i. In this case, we obtain:

POPt = qki
[
fti(q

ki) + e1ti + · · ·+ ei−1ti

]
. (EC.14)

The LP objective at time t is composed of three different parts. First, if tj < t, then the contribution

of POP (p(tj ,kj)) at time t is equal to: q0
[
ft(q

0)+ejti
]
. Second, if tj = t= ti, then the contribution of

POP (p(tj ,kj)) at time t is equal to: qkifti(q
ki). Third, if tj > t, then the contribution of POP (p(tj ,kj))

at time t is the same as the contribution of POP (p0) at time t. Therefore, in a similar way as in

equation (EC.13), the LP objective at time t can be written as:

LPt =
i−1∑
j=1

q0ejti + qkifti(q
ki). (EC.15)

By comparing equations (EC.14) and (EC.15), one can see that equation (EC.10) is satisfied and

this concludes the proof of the first claim.

The second claim is a consequence of the first one. The first inequality follows from the facts that

qkj − q0 ≤ 0 and gtj−ti(q
kj ) ≤ 0. The second inequality follows from the facts that 0 ≥ qkj − q0 ≥

qK − q0, and tj − ti ≥ (j− i)(S+ 1) (from the constraints on separating periods between successive

promotions). By using the properties of the functions gk from Assumption EC.1, we obtain: 0≥
gtj−ti(q

kj )≥ g(j−i)(S+1)(q
K). �

EC.7. Proofs of Tightness for Additive Demand

1. Lower bound

Proof. In the case when S ≥M , we know from Proposition 1 that an optimal solution of the

LP is also an optimal solution of the POP. Thus, the result holds in this case.

In the case when S <M , we will construct a POP problem:

POP ({qk}Kk=0,{ft}Tt=1,{ct}Tt=1,{gm}Mm=1,L,S),

and a price vector p∗, which we will show is both an LP optimal solution and a POP optimal

solution. Let T =L(M + 1). Let us define the price vector p∗ by:

p∗t =

{
qK t∈ U ,
q0 t /∈ U .

Let U = {1, (M + 1) + 1,2(M + 1) + 1, . . . , (L− 1)(M + 1) + 1} denote the promotion periods of p∗.

Let us define Y =
∑M

i=1|gi(qK)| and Z = (L+ 1)q0Y/qK and the demand functions ft to be:

ft(pt) =

{
Z if t∈ U and pt = qK ,

Y otherwise.

Note that for any feasible price vector p, the demand at each time is nonnegative. Let us define

the costs ct = 0,∀t= 1, . . . , T . We prove the proposition by the following steps:

Step 1: We show that an optimal LP solution is the price vector pLP = p∗.

Step 2: We show that an optimal POP solution is the price vector pPOP = p∗.
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Proof of Step 1 By defintion, we have: POP (p{(t,K)})−POP (p0) = qKZ−q0Y −q0Y for t∈ U .

The first term is the period t profit of POP (p{(t,K)}), the second term is the period t profit of

POP (p0), and the third term is the reduction in profit of periods t+1, . . . , t+M of POP (p{(t,K)})
due to the promotion in period t. Therefore, the LP coefficients as defined in (6) are:

bkt =

{
qKZ − 2q0Y ≥ 0 if t∈ U , k=K

≤ 0 otherwise

The LP optimal solution selects at most L of γkt , for k= 1, . . . ,K to be 1. Consequently, the optimal

LP objective is bounded above by Tq0Y +L(qKZ− 2q0Y ). In fact, the following γ∗ corresponding

to p∗ achieves this bound and is therefore optimal:

(γ∗)kt =


1 if t∈ U , k=K

1 if t /∈ U , k= 0

0 otherwise

We conclude that pLP = p∗.

Proof of Step 2 We show that for any feasible price vector p, we have POP (p∗) ≥ POP (p).

Observe that the POP profit for p∗ is given by:

POP (p∗) =LqKZ + (T −L)q0Y −Lq0Y.

In particular, the first term corresponds to the profit from the promotion periods U and the second

term is the profit from the non-promotion periods T \U before promotions. Finally, the third term

represents the reduction in profit during the non-promotion periods due to the promotions in U .

Let POPt be the POP (p) profit at period t. If we promote at time t ∈ U using the price qK ,

then POPt = qKZ and otherwise, POPt ≤ q0Y . For any p 6= p∗, p has at most L− 1 promotions

at the time periods t∈ U . Therefore, we obtain: POP (p)≤ (L− 1)qKZ+ (T −L+ 1)q0Y. The first

term results from the promotions during the periods in U , whereas the second term comes from

the non-promotion periods. One can see that:

POP (p∗)−POP (p) =LqKZ + (T −L)q0Y −Lq0Y −
[
(L− 1)qKZ + (T −L+ 1)q0Y

]
= qKZ − (L+ 1)q0Y ≥ 0,

from the definition of Z. Therefore, POP (p∗)≥ POP (p) as desired. �

2. Upper bound

Proof. In the case when S ≥M , we know from Proposition 1 that an optimal solution of the

LP is also an optimal solution of the POP. We also know from equation (EC.8) that R= 0. Thus,

the result holds in this case.
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In the case when S <M , we will construct a POP problem:

POP ({qk}Kk=0,{ft}Tt=1,{ct}Tt=1,{gm}Mm=1,L,S),

an optimal LP price vector pLP , and an optimal POP price vector pPOP , such that POP (pPOP ) =

POP (pLP ) +R. Let T = (M + 1)L. Let us define Y =
∑M

i=1|gi(qK)|, Z = (L+ 1)q0Y/qK and the

demand functions ft to be:

ft(pt) =

{
Z if 1≤ t≤LM + 1 and pt = qK ,

Y otherwise.

Note that for any feasible price vector p, the demand at each time is nonnegative. We prove the

proposition by the following steps:

Step 1: We show that the following price vector is an optimal LP solution:

pLP =
(
qK , q0, . . . , q0︸ ︷︷ ︸

M times

, qK , q0, . . . , q0︸ ︷︷ ︸
M times

, . . . , qK , q0, . . . , q0︸ ︷︷ ︸
M times

)
.

Step 2: We show that the following price vector is an optimal POP solution:

pPOP =
(
qK , q0, . . . , q0︸ ︷︷ ︸

S times

, qK , q0, . . . , q0︸ ︷︷ ︸
S times

, . . . , qK , q0, . . . , q0︸ ︷︷ ︸
T−(L−1)(S+1)−1 times

)
.

Step 3: We show that POP (pPOP ) = POP (pLP ) +R which concludes the proof.

Proof of Step 1. By definition, we have:

POP (p{(t,K)})−POP (p0) = qKZ − q0Y − q0Y

for t ∈ U . The first term is the period t profit of POP (p{(t,K)}), the second term is the period

t profit of POP (p0), and the third term is the reduction in profit of periods t+ 1, . . . , t+M of

POP (p{(t,K)}) due to the promotion in period t. Therefore, the LP coefficients as defined in (6)

are:

bkt =

{
qKZ − 2q0Y ≥ 0 if t∈ U , k=K

≤ 0 otherwise

The LP optimal solution selects at most L of γkt , for k= 1, . . . ,K to be 1. Consequently, the optimal

LP objective is bounded above by Tq0Y +L(qKZ−2q0Y ). In fact, the following γLP corresponding

to pLP achieves this bound and is therefore optimal:

(γLP )kt =


1 if t∈ U , k=K

1 if t /∈ U , k= 0

0 otherwise

We conclude that pLP is an optimal solution to LP. Note that because any two promotions are

separated by at least M periods, ER(pLP ) = 0 and then from Proposition EC.2:

POP (pLP ) =LP (pLP ). (EC.16)



ec22 e-companion to Cohen et al.: The Impact of Linear Optimization on Promotion Planning

Proof of Step 2. By using Proposition EC.2, we know that for any feasible price vector p:

POP (p) =LP (p) +ER(p). One can see that LP (p)≤LP (pPOP ). Indeed, we note that the price

vector pPOP is also optimal for the LP by using a similar argument as for pLP . In other words, in this

case, both pLP and pPOP are optimal LP solutions. By using the definition of R from (EC.8), one

can see that ER(p)≤R for all feasible p. In other words, R corresponds to the largest possible error

term. In addition, we have in this case: ER(pPOP ) =R by construction. Since LP (p)≤LP (pPOP )

and ER(p)≤ER(pPOP ) for any p, we obtain POP (p)≤ POP (pPOP ) for any p so that pPOP is

an optimal POP solution. In addition, we have shown that:

POP (pPOP ) =LP (pPOP ) +R. (EC.17)

Proof of Step 3. In the proof of Step 2 we have shown that LP (pLP ) = LP (pPOP ). Combining

this equation with (EC.16) and (EC.17) gives us the desired result. �


