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Abstract. Promotions are a critical decision for supermarket managers, who must decide
the price promotions for a large number of items. Retailers often use promotions to boost
the sales of the different items by leveraging the cross-item effects. We formulate the
promotion optimization problem for multiple items as a nonlinear integer program. Our
formulation includes several business rules as constraints. Our demand models can be
estimated from data and capture the postpromotion dip effect and cross-item effects
(substitution and complementarity). Because demand functions are typically nonlinear,
the exact formulation is intractable. To address this issue, we propose a general class of
integer programming approximations. For demand models with additive cross-item ef-
fects, we prove that it is sufficient to account for unilateral and pairwise contributions and
derive parametric bounds on the performance of the approximation. We also show that the
unconstrained problem can be solved efficiently via a linear program when items are
substitutable and the price set has two values. For more general cases, we develop efficient
rounding schemes to obtain an integer solution. We conclude by testing our method on
realistic instances and convey the potential practical impact for retailers.
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1. Introduction
Retailers have access to several levers to increase sales
and profits. One of these levers is price promotions.
For example, in a supermarket, the retailer offers thou-
sands of different items and must decide the price pro-
motions for each item in each period. Setting the right
promotions is critical because it can directly impact
the retailer’s profitability in an industry where profit
margins are very small. It is common for retailers to
have thousands of promotions simultaneously. In-
deed, offering promotions can help retailers capture
different segments of customers and stimulate traffic
and demand in the store.

To this day, many supermarket managers are still
deciding promotions manually by using a combina-
tion of experience and domain knowledge. The sub-
stantial amount of available data provides an opportu-
nity to develop data-driven tools that can guide retailers
in deciding on promotions at scale. Retailers need to
set the price promotions for thousands of items while
satisfying the relevant business rules. In this paper,
we develop a model directly inspired by a collabo-
ration with a large supermarket chain. Ourmodel can
help retailers automate the process of deciding on the
promotions for a large number of items while capturing

several key economic factors. We also believe that the
models and algorithms developed in this paper are in-
teresting from an optimization theory perspective.
In the paper by Cohen et al. (2017), the authors

consider a simpler version of the problem where the
retailer optimizes the promotions for a single item. In
various settings, promoting a specific item can po-
tentially affect the demand of several other items. For
example, consider two similar substitutable items
such as competing brands of cereals.When one item is
on promotion, it can often reduce the sales of the other
item, given that some customers may switch from one
brand to another. Studying the brand-switching effect
induced by retail promotions received great atten-
tion in the marketing community (see Van Heerde
et al. (2003) and the references therein). When de-
ciding on promotions, retailers need to account for
the interplay between the different items. The main
goal of this paper is to extend the work by Cohen
et al. (2017) for a setting with multiple items, where
the categorymanager needs to simultaneously decide
on the price promotions of all the items in the cate-
gory. The solution approach developed for a single
item does not yield good results when applied to a
setting with multiple items because it does not properly
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capture the relationships among the different items.
As we will see, extending the solution approach from
a single item to a setting with multiple items is not
straightforward and requires different machinery.
Interestingly, the method developed in this paper can
be applied to more general nonlinear binary integer
programming (IP) problems beyond the context of
retail promotions.

In this paper, we focus on fast-moving consumer
goods (FMCGs). Examples of FMCGs include dry
goods (e.g., coffee, tea, sugar, and beans), toiletries
and cleaning products, and packed beverages. FMCGs
typically have a long shelf life and are sold quickly at
a relatively low cost. Several sources provide evi-
dence that a large portion of FMCG sales are made
on promotions. For example, the group Information
Resources, Inc. (IRI) found that in the United King-
dom, 54.6% of the products (by volume) were sold on
promotion.1 It is thus not surprising that FMGC
manufacturers invest large budgets for promotions;
according to Nielsen (2015), the annual promotion
budget for FMGCmanufacturers is around $1 trillion.

Planning retail promotions is a challenging process
for at least four reasons. First, as discussed earlier,
cross-item effects on demand may be significant and
need to be taken into account. When an item is on
promotion, it can also affect the demand of several
other items (complements or substitutes). To our
knowledge, previous work did not explicitly cap-
ture such effects. Second, it is important to carefully
capture the business rules that restrict the different
promotions. These rules are either set by the super-
market or negotiated with suppliers. For instance, the
total number of promotions may be within a certain
limit, and there are restrictions on promoting com-
peting items at the same time (for more details, see
Section 2.2). The third reason is related to the post-
promotion dip effect on demand. Specifically, cus-
tomers often strategically purchase large amounts
of promoted products toward future consumption.
This is especially true for nonperishable items. This
stockpiling behavior decreases the demand for future
time periods and hence makes the problem more chal-
lenging because it couples the different time periods.
Finally, the large scale of the promotion optimization
problem contributes to its difficulty. Indeed, it is com-
mon for supermarkets to hold thousands of stock-
keeping units (SKUs), leading to a sizable number of
decision variables.

In the retail sector, promotions can substantially
affect sales and incentivize customers. In the back-to-
school context, the International Council of Shopping
Centers ran a survey in 2017 that found that promo-
tions influence close to 90% of shoppers.2 As discussed,
our main goal is to develop a model and tool that

can guide retailers when setting price promotions.
We intend to propose a data-driven model that can
leverage available data and automate the promotion
planning process. In this paper, we tackle this problem
by first formulating the promotion optimization prob-
lem for multiple items (which we call the Multi-POP).
We then propose an efficient approximation solution
approach and examine its performance—both ana-
lytically and computationally.
We study a class of demand functions that incor-

porates the postpromotion dip effect and cross-item
effects. Our approximate solution approach will pro-
vide promotion prices along with analytical perfor-
mance guarantees. Our Multi-POP formulation is a
nonlinear integer program, and hence an approach
based on directly optimizing the objective is not com-
putationally tractable. We first convey that the method
developed byCohen et al. (2017) for a single item does
not perform well in a setting with multiple items.
To address this issue, we propose amore general class
of IP approximation methods. We then show that
for demand models with additive cross-item effects
(i.e., promoting item j has an additive effect on the
demand of item i), the problem can be efficiently
solved by considering only unilateral and bilateral
contributions, that is, accounting only for the effect of
one or two simultaneous promotions (more details
are presented in Section 3).We show that realistic-size
instances can be solved efficiently: most cases are
solved through a single linear program (LP), whereas
some more involved cases are solved via an iterative
rounding scheme based on solving several LPs. One
strength of our method is the fact that it can be ap-
plied to a general demand function.We also establish
a parametric bound on the performance guarantee
relative to the optimal objective. Finally, we use our
model and approximation solution to draw mana-
gerial insights that can help retailers improve their
promotion decisions. Indeed, one of the goals of this
research is to develop data-driven optimization models
that can guide the promotion planning process for su-
permarket retailers.

1.1. Contributions
We next summarize our main contributions.
• We propose an IP approximation that accurately

captures cross-item effects on demand. We introduce
a nonlinear IP formulation for the Multi-POP that
captures cross-item effects and several business rules.
Our demand models include economic factors such
as postpromotion dip and cross-item effects. Because
the problem is not computationally tractable, we
propose a class of IP approximations—referred to as
App(κ)—based on approximating the objective by
unilateral and higher-order contributions. We then
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focus on App(2), which approximates the objective by
only accounting for unilateral (i.e., single promotions)
and bilateral (i.e., pairs of promotions) contributions.
We show that for demand models with additive cross-
item effects, the App(2) approximation is exact. Con-
sequently, one needs to account only for unilateral
and bilateral contributions without computing an
exponential number of coefficients.

• We show that the approximation solution can
be computed efficiently. We observe that the con-
straint matrix of the approximated problem is not
totally unimodular. Nevertheless, we show that for
substitutable items and additive cross-item effects,
the unconstrained problem admits an integral LP
relaxation under two prices. Under these assump-
tions, we can thus obtain an optimal solution effi-
ciently by solving a linear program. Ultimately, it
allows us to solve large, realistic instances in short
timeframes. We also show computationally that even
more complicated instances can be solved in accept-
able timeframes.

• We develop a performance bound for multipli-
cative demand functions with additive cross-item
effects. We derive a parametric bound on the qual-
ity of the IP approximation relative to the optimal
Multi-POP solution.We convey that for realistic retail
instances, our bound yields a good performance guar-
antee. We also show that the approximation leads to
the optimal solution for additively separable demand
functions (in both past and cross-prices).

• Weuse ourmodel to draw insights on promotion
planning. We study the interplay between the post-
promotion dip and cross-item effects. Understanding
such insights can be useful for category managers
who need to schedule the promotions of thousands of
items. For example, we convey that when the degree
of substitution increases, it becomes optimal to reduce
the number of promotions. We also show that our
model captures the loss-leader effect (i.e., the strategy
of pricing a product below cost to stimulate the de-
mand of other products), which is often observed in
retail. Finally, we test the practicality of our model on
realistic instances.

1.2. Literature Review
Our work is related to three streams of literature:
nonlinear optimization, dynamic pricing, and pro-
motions in the field of marketing.

1.2.1. Nonlinear Optimization. The promotion optimi-
zation problem is written as a nonlinear mixed-integer
program (NMIP). Under most realistic demand models,
the resulting objective function is nonconcave, and thus
the problem is hard to solve. Hemmecke et al. (2010)
present several structural assumptions that allow us

to solve NMIPs in polynomial time. In many practical
cases, these assumptions are not satisfied, so one
needs to solve the NMIP by using techniques such
as branch and bound and extended cutting-plane
methods (Grossmann 2002). One of our approxima-
tion methods is based on solving an unconstrained
binary quadratic program (UBQP). Rhys (1970) and
Balinski (1970) have shown that the UBQP can be
solved in polynomial time under certain conditions,
which are similar to the conditions in our setting.
There are a large number of follow-up studies on this
topic. For example, in the context of project sched-
uling, Möhring et al. (2003) consider a similar for-
mulation as ours and extend the reduction of a special
case of ordinary precedence constraints and unit
processing times to the minimum-cut problem.
In this paper, we exploit the discreteness of the

Multi-POP to approximate the objective function.
More precisely, we propose a general class of IP
approximations. We show that approximating the
objective by unilateral and bilateral deviations (i.e.,
contributions of one and two promotions) yields a good
performance. This approximation is connected to the
well-studied topic of quadratic programming (Frank
and Wolfe 1956, Nocedal and Wright 2006). To our
knowledge, the method presented in this paper differs
from previous approaches in that it exploits the specific
structure of the promotion optimization problem to
derive structural insights.

1.2.2. Dynamic Pricing. The field of dynamic pricing
was and still is extensively studied. For compre-
hensive reviews, see Talluri and Van Ryzin (2006)
and Özer and Phillips (2012). The work by Cohen
et al. (2017) studies the promotion optimization prob-
lem for a setting with a single item. The authors
propose an efficient algorithm based on discretely
linearizing the objective. They then show that their
approximation yields a near-optimal solution in most
practical instances, runs in milliseconds, and can
easily be implemented by retailers. As we discuss
later in this paper, the same methodology cannot be
extended to the setting with multiple items without
sacrificing performance. Instead,we introduce amore
general method that explicitly accounts for the pair-
wise interactions of promoting two items simulta-
neously. Cohen and Perakis (2020) present an over-
view on promotion optimization in retail by discussing
themodels and insightsdeveloped inCohen et al. (2017)
and in the present paper (this book chapter is meant
to be an overview and does not contain original re-
search; it does not include the specifics of the algo-
rithms, the formal analytical results and their proofs,
and the computational experiments). Dynamic pricing
is studied by a multitude of researchers in different
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contexts (Ahn et al. 2007, Levin et al. 2010, Su 2010,
Cohen et al. 2018). Ahn et al. (2007) consider a setting
where a fraction of the customers will strategically
wait and purchase the product if the price falls
below their valuation. Su (2010) investigates a model
with several customer types (composed of shopping
and holding costs and rates of consumption). Finally,
Levin et al. (2010) consider a monopolist offering
a perishable item to strategic customers. Note that
most previous work considers stylized modeling
assumptions and is often restricted to a single-item
setting. In this paper, however, we consider a practi-
cal problem where the demand models are directly
estimated from data, and the optimization formula-
tion includes the promotion decisions of several inter-
connected items.

1.2.3. Promotions in Marketing. Retail promotions are
at the core of the marketing discipline. For more
details, see the book by Blattberg and Neslin (1990)
and the references therein. In this stream of literature,
researchers typically estimate dynamic demand models
to study causal effects and sharpen our current under-
standing on the impact of promotions (Foekens et al.
1998, Cooper et al. 1999). Foekens et al. (1998) esti-
mate parametric models calibrated with scanner data
to infer the dynamic impact of promotions. As dis-
cussed earlier, for several categories of items, retail
promotions may have a postpromotion dip effect. Spe-
cifically, when the item is promoted, consumers may
stockpile by buying additional units toward future
consumption. This effect results in a reduction in
short-term future sales. A common way to model this
effect is by assuming that the demand function de-
pends both on the current price and on the prices
from the previous periods (Macé and Neslin 2004,
Ailawadi et al. 2007). The demandmodels used in our
paper also consider that the demand depends explicitly
on current and past prices as well as on prices of other
items. Finally, Baardman et al. (2018) address the
problem of optimally scheduling promotional vehi-
cles (e.g., end-cap displays, in-store advertisements)
for a retailer.

A number of studies empirically examine retail
promotions (Van Heerde et al. 2003, Felgate and
Fearne 2015). Most of these papers adopt a descrip-
tive approach. In this paper, however, we are more
interested in the prescriptive side of solving the
promotion optimization problem to help retailers
decide on future promotions.

1.2.4. Structure of the Paper. In Section 2, we describe
the model and assumptions, as well as the formula-
tion of the Multi-POP. In Section 3, we introduce and
study a class of approximationmethods for our problem.

In Section 4, we use our model and solution approach
to draw practical insights on promotion planning.
Section 5 presents computational experiments and
conveys the applicability of our solution approach.
Finally, we report our conclusions in Section 6.
Most proofs of the technical results are relegated to
the appendix.

2. Problem Formulation
We consider a supermarket category such as ground
coffee, cereals, and soft drinks with N items or SKUs.
We seek to maximize the total profit throughout a
selling season consisting of T periods (e.g., one quarter
of 13 weeks). The price of item i at time t is denoted
by pit (the subscript index corresponds to the time,
whereas the superscript index refers to the item).
The (exogenous) unit cost is denoted by cit.

2.1. Assumptions
We assume that the retailer carries a sufficient level of
inventory to meet the demand of each of the N items
during the selling season.3 Although this assumption
is not satisfied for all retail products (e.g., fashion
items), it is typically satisfied for FMCGs. Unlike
fashion items, which are often seasonal, FMCGs are
available throughout the year. As mentioned earlier,
FMCGs are easy to store and have a long shelf life.
Retailers have an extensive experience in inventory
and stocking decisions and often use modern fore-
casting tools to support ordering decisions (Cooper
et al. 1999, Van Donselaar et al. 2006). In addition,
grocery retailers are aware of the adverse effects of
stock-outs (Campo et al. 2000, Corsten and Gruen
2004). We thus assume that FMCG retailers have
enough inventory for the selling season. Cohen et al.
(2017) examine retail data for FMCGs and confirm
that the demand forecast accuracy is high and that a
very small number of stock-outs occurred in a two-
year period.
We assume that the demand is a time-dependent

nonlinear function of the prices. More precisely, the
demand of item i at time t is denoted by dit(p), where
p is a vector of current and past prices (see more
details in Equation (1)). The objective is to decide
which items to promote and when to maximize the
total profit over the selling season T.
Each item i � 1, . . . ,N can take several prices: the

regular price denoted qi0 and Ki � |Qi| − 1 promotion
prices denoted qik. The total number of price points
for item i is called the size of the price ladder and is
denoted |Qi|. For example, if we have Ki � 2 promo-
tion prices, then qi2 < qi1 < qi0 and |Qi| � 3.
Without loss of generality, we assume that the

regular price qi0 � q0 is the same across all items and
all time periods (this assumption can be relaxed at
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the expense of a more cumbersome notation). Note
that a typical real-world instance can be composed of
30–150 items, 13 periods, and several price points,
yielding a large number of decision variables. We define
the binary decision variable γik

t to be equal to one if the
price of item i at time t is set to qik and zero otherwise.

In several product categories, cross-item effects on
demand can be significant. Specifically, a promotion
for a particular item affects its own sales but also the
sales of other items in the category. One can distin-
guish between two different types of cross-item ef-
fects: substitutability and complementarity. These two
types of cross-item effects are well known in eco-
nomics and operations management (Pindyck and
Rubinfeld 2005). The standard example of substi-
tutable items is competing brands such as Coke and
Pepsi. In this case, it is clear that promoting a Coke
product potentially increases Coke’s sales but may
also decrease Pepsi’s sales. This follows from the fact
that some customers may be indifferent between both
items and are likely to switch from one brand to the
other when one is on promotion. Mathematically,
if items i and j �� i are substitutes, then ∂dit/∂p

j
t ≥ 0

and ∂djt/∂p
i
t ≥ 0. Two items i and j are complements if

the consumption of i induces customers to purchase j,
and vice versa, for example, shampoo and condi-
tioner. In this case, it is clear that when the shampoo is
on promotion, its own sales increase, but the sales of
the conditioner can also increase because people typi-
cally purchase both items together. Mathematically, if
items i and j �� i are complements, then ∂dit/∂p

j
t ≤ 0 and

∂djt/∂p
i
t ≤ 0. In what follows, we formulate the pro-

motion optimization problem formultiple itemswhile
explicitly incorporating cross-item effects on demand.
Before doing so, we impose the following assumption
on the demand function.

Assumption 1. The demand function depends explicitly on
self past and current prices and on cross current prices.

Assumption 1 implies that the demand does not
explicitly depend on cross past prices. In other words,
the demand of item i does not depend on the past
prices of the other items in the category. This as-
sumption is supported by the fact that most con-
sumers may be loyal to a particular brand. As a result,
they can stockpile large quantities of a specific item
while it is on promotion. They are also aware of all the
prices of the other items at time t, so they can po-
tentially decide to switch and purchase a different
item. However, consumers usually do not remember
the past prices of other items in the category. We
tested the validity of this assumption using data from
a large retailer and observed that in the vast majority

of product categories, the parameters related to the
cross past prices were not statistically significant
(the details of these tests are beyond the scope of this
paper and hence omitted). The demand of item i at
time t can be any nonlinear time-dependent function
of the form

dit p
i
t, p

i
t−1, . . . , p

i
t−Mi ,p−i

t

( )
, (1)

whereMi represents the memory parameter of item i,
that is, the number of past prices that affect current
demand, and p−i

t denotes the vector of prices of all
items but i at time t. Note that in practice Mi is esti-
mated from data and can be different for different
items. The function dit(·) represents the expected de-
mand. For FMCGs, the demand prediction accuracy
is often high, so expected and actual demands are
close to each other (in other words, we assume that
demand is deterministic and can be accurately esti-
mated from data).4

2.2. Business Rules
We identify two types of business rules: (1) self-
business rules, that is, price constraints for each item
separately, and (2) cross-item business rules, that is,
rules that impose price constraints across several
items. The self-business rules are the same as in Cohen
et al. (2017), whereas the cross-item business rules are
original from this paper.

2.2.1. Self-Business Rules.
1. Discrete price ladder. The price of each item is

often restricted to lie in a finite set of admissible prices
(e.g., prices must end with 9 cents). For simplicity, we
assume that the elements of the price ladder are time
independent, but our results still hold when this as-
sumption is relaxed. Thus, the price of item i at time t
can be written as pit � ∑Ki

k�0 q
ikγik

t , where the binary
variable γik

t is equal to one if the price of item i at time
t is qik and zero otherwise.
2. Maximal number of promotions per item. The re-

tailer may want to limit the promotion frequency of
a specific item to preserve the store image and not
train customers to be deal seekers. For example, it
may be required to promote item i at most Li � 3 times
during the quarter. This requirement is captured
by

∑T
t�1

∑Ki

k�1 γ
ik
t ≤ Li.

3. No-touch constraint.A common requirement is to
space out two successive promotions by a minimal
number of separating periods, denoted by Si. As
before, this helps retailers preserve the store image
and discourage customers from being deal seekers.
In addition, this type of requirement may be di-
rectly dictated by the manufacturer, who sometimes

2344
Cohen, Kalas, and Perakis: Promotion Optimization for Multiple Items

Management Science, 2021, vol. 67, no. 4, pp. 2340–2364, © 2020 INFORMS



restricts the frequency of promotions. Such a re-
quirement translates to

∑t+Si
τ�t

∑Ki

k�1 γ
ik
τ ≤ 1 ∀t.

2.2.2. Cross-Item Business Rules.
1. Total maximal number of promotions for the cate-

gory. The supermarket may want to restrict the
number of promotions for the category during the
next T periods (e.g., at most LT � 20 promotions are
allowed). This requirement translates to

∑N

i�1

∑T

t�1

∑Ki

k�1
γki
t ≤ LT. (2)

We notice that the constraint in (2) is relevant only
if LT <

∑N
i�1 Li.

2. Interitem constraints. Business rules often impose
price constraints across different items. For instance,
for a given item, the smaller format should be priced
at a lower price point than the larger format. Simi-
larly, private labels should be cheaper than national
brands. This type of interitem business rule can be
written as linear price constraints: for example, pit ≤ pjt ∀t
captures the fact that item i should be priced no higher
than item j.

3. Simultaneous promotions. In some cases, category
managers need to promote specific items at the same
time. This requirement may come from a special
promotional campaign or from a manufacturer trade
fund. Specifically, the constraint γ0i

t � γ
0j
t ∀t, captures

the restriction that items i and j must be promoted at
the same time (the binary variable γ0i

t is one if there is
no promotion for item i at time t).

4. Maximal number of promotions per period. Cate-
gory managers often need to restrict the number of
promotions in the category for each time period
(e.g., a week). For example, at most, 10% of the items
in the category may be promoted (i.e., Ct � N/10):

∑N

i�1

∑Ki

k�1
γki
t ≤ Ct ∀t. (3)

5. Inter-no-touch constraints. Spacing out promo-
tions can also be required for a set of items. Once
again, such constraints help to discourage customers
from being deal seekers and preserve the store im-
age. In this case, we need to separate the successive
promotions for a given set of items by at least Sc

separating periods. This requirement translates to
∑

i
∑t+Sc

τ�t
∑Ki

k�1 γ
ki
τ ≤ 1 ∀t, where the summation on i is

taken over a specific set of items in the category. The
special case with Sc � 0 corresponds to never holding
simultaneously promotions to impose an exclusive
deal—a common practice in retail.

2.3. Problem Formulation
We can now formulate the promotion optimization
problem for multiple items (Multi-POP):

max
γik
t

∑N

i�1

∑T

t�1
pit− cit
( )

dit p
i
t,p

i
t−1, . . . ,p

i
t−Mi ,p−i

t

( )
,

subject to (s.t.) pit �
∑Ki

k�0
qikγik

t , ∀i

∑T

t�1

∑Ki

k�1
γik
t ≤ Li, ∀i

∑t+Si

τ�t

∑Ki

k�1
γik
τ ≤ 1, ∀i, t

∑Ki

k�0
γik
t � 1, ∀i, t

∑N

i�1

∑T

t�1

∑Ki

k�1
γki
t ≤ LT,

∑N

i�1

∑Ki

k�1
γki
t ≤Ct, ∀t

γik
t ∈ 0,1{ } ∀i, t,k.

(Multi−POP)
As discussed, Li, Si, and Ki denote the limitation of
promotions, no-touch period, and number of pro-
motion prices in the price ladder for item i, respec-
tively. Note that the objective is to maximize the total
profit generated by the N items in the category over
the selling season. In the formulation (Multi-POP), we
have included the various self-business rules and two
cross-item business rules (total maximal number of
promotions and maximal number of promotions per
period). Depending on the setting, one can also in-
clude alternative cross-item business rules as addi-
tional constraints. We highlight that even in the ab-
sence of cross-item business rules, the N items are
linked via the cross-item effects on demand.

3. Solution Approach
In the Multi-POP formulation, one can observe two
types of effects: (1) cross-time effects, which are
driven by the effect of past prices on current demand
for each item, and (2) cross-item effects, which arise
from substitution and complementarity of the dif-
ferent items in the category. Because one needs to
decide on promotions for all N items at all times, the
problem is a large-scale nonlinear integer program.
Our first attempt was to apply the linear IP approx-
imation based on unilateral contributions of having a
single promotion at a time, developed by Cohen
et al. (2017). For the case of multiple items, it ap-
proximates the objective by the sum of unilateral
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promotions of each item separately. This approach
fails to capture the cross-item effects and will lead to
poor performance when the cross-item effects are
significant. For instance, by ignoring substitution
effects, such an approximation can lead to promoting
all the items, whereas the optimal policy would be to
not promote at all. To develop a better solution ap-
proach for Multi-POP, we need to find a way to in-
corporate the cross-item effects. To this end, we in-
troduce the class of methods App(κ) for any given
κ � 1, 2, . . . ,N, where κ represents the degree of the
approximation. More precisely,

• App(1) approximates the Multi-POP objective
function by the sum of the marginal contributions of
a single promotion for each item and time period.
In other words, App(1) is based on the IP approxi-
mation method developed by Cohen et al. (2017) for
the setting with a single item. As discussed earlier,
however, this method typically yields a poor per-
formance for a setting with multiple items, including
in our various computational experiments.

• App(2) approximates the Multi-POP objective
function by the sum of the marginal contributions, as in
App(1), as well as the pairwise contributions, that is,
having two items promoted simultaneously. We de-
scribe the details of App(2) in the following paragraphs.

• App(N) is an alternative IP approximation that
includes the marginal contributions, the pairwise con-
tributions, and so on, up to all possible combinations
of having all N items promoted simultaneously.

One can also naturally consider any intermediate
method for 2 < κ < N. Note that there is a trade-off
between simplicity and performance (in terms of the
approximation method’s accuracy). On the one hand,
we have App(1). This method only requires compu-
tation of themarginal contributions of having a single
promotion at a time but can yield a poor performance
because it does not capture the cross-item effects on
demand. On the other hand, we have App(N). This
method is clearly more accurate than App(1) because
it captures all the cross-item effects on demand.
Needless to say, this benefit comes at a cost. Indeed,
App(N) relies on computing themarginal contribution
of promoting every combination of items at the same
time. It thus requires computation of an exponential
number of coefficients and solving an integer pro-
gram that grows exponentially with the number of
items. Note that, in general, App(N) is not guaranteed
to yield an optimal solution. For the special cases
where either T � 1 or Mi � 0 ∀i, App(N) does yield an
optimal solution because no time effects are induced
frompast promotions. In a general instance, however,
App(N) is not necessarily an exact method. We next
present the App(2) method in greater detail.

As mentioned earlier, App(2) approximates the
Multi-POP objective function by the sum of the

marginal contributions (i.e., single promotion for
each item and time period) and the pairwise con-
tributions (i.e., two items promoted simultaneously).
Accordingly, the approximated objective can be writ-
ten as

MPOP p0( )+ max
γ

∑N

i�1

∑T

t�1

∑Ki

k�1
bkit γ

ki
t

{

+ ∑N

i,j:i>j

∑T

t�1

∑Ki

k�1

∑Kj

��1
bk�ijt γ

k�ij
t

}

, (4)

where bkit and bk�ijt are defined in (5) and (6), respec-
tively. The binary decision variable γ

k�ij
t is equal to

one if the prices of items i and j at time t are set to qik

and qj�, respectively, and zero otherwise. Here p0 �
(q0, . . . , q0) denotes the NT-dimensional regular price
vector and corresponds to the situation where the
regular price is set for all items at all times. The term
MPOP(p0) accounts for the total profit when no pro-
motion is made. The middle term in (4) captures the
marginal contributions of having a single promotion
at a time. The marginal contribution of promoting
item j at time t (using price qkj) is captured by the
NT-dimensional price vector pkj

t , which is given by

pkj
t

( )

τ
� qkj, if τ � t and i � j,

q0, otherwise.

{

The vector pkj
t is such that the regular price q0 is used

for item j at all times but t, as well as for all items
different from j at all times. Then the coefficient bkjt
captures the marginal profit contribution of having a
single promotion for item j at time t (using price qkj)
and is given by

bkjt � MPOP pkj
t

( )
−MPOP p0( )

. (5)
The last term in (4) captures the pairwise contribu-
tions of having two items promoted at the same time.
The marginal contribution of promoting both item j
(using price qkj) and item u < j (using price q�u) at time t
is captured by the NT-dimensional price vector pk�ju

t ,
which is given by

pk�ju
t

( )

τ
�

qkj, if τ � t and i � j,
q�u, if τ � t and i � u,
q0, otherwise.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

The vector pk�ju
t is such that the regular price q0 is used

for items j and u at all times but t, as well as for all
items different from j and u at all times. Then the
coefficient bk�jut captures the pairwise contribution on
the total profit of having two simultaneous promo-
tions for items j and u at time t and is given by

bk�jut � MPOP pk�ju
t

( )
−MPOP pkj

t

( )

−MPOP p�u
t

( ) +MPOP p0( )
, (6)
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but note that we can also write bk�jut � MPOP(pk�ju
t ) −

MPOP(p0) − bkjt − b�ut . Using this representation, bk�jut
corresponds to the marginal contribution of having
two simultaneous promotions for items j and u at
time t relative to the case where the promotions are
made separately.

To ensure that the App(2) formulation is consistent,
we need to add some additional constraints. Specif-
ically, we want to ensure that when both items i and j
are promoted, we include the pairwise contribution
of these two items and both unilateral contributions.
In other words, for each pair of items i and j < i, γki

t �
γ
�j
t � 1 if and only if γk�ij

t � 1 for each t and k, �. To
incorporate this type of condition, we add the four
following constraints for each pair of items i, j < i,
each t, and each promotion price qki and q�j to the
App(2) formulation:

γ
k�ij
t ≤ γki

t , γ
k�ij
t ≤ γ

�j
t , γ

k�ij
t ≥ 0,

γ
k�ij
t ≥ γki

t + γ
�j
t − 1. (7)

Note that by construction, App(2) is exact for N � 2 in
the sense that it accurately captures all the cross-item
effects. ForN > 2, App(2) approximates the Multi-POP
objective by the sum of unilateral and pairwise
contributions and is not exact (unless the cross-item
effects are present only for pairs of items). However, it
performs significantly better than App(1) because the
latter does not account for cross-item effects at all.
Finally, we can similarly formalize the definition
of App(κ), κ � 3, . . . ,N.

Ultimately, the App(2) approximation consists of
solving the problem in (4) while adding the additional
constraints in (7). The decisions variables are the bi-
nary variables γ. We have one such variable for each of
theN items, theT time periods, and theK + 1 price points
(i.e.,NT(K + 1), assuming for simplicity thatKi � K ∀i).
We also have one such variable for any pair of items
i > j at each time and price (i.e., (N(N − 1)/2)TK2). As
discussed earlier, for the App(N)method, the number
of variables increases exponentially in N and K, so it
may be impractical to go beyond App(3) or App(4).
Nevertheless, aswe show in Theorem1, it is enough to
consider App(2) under some assumptions.

Theorem 1. Assume that the cross-item effects for each item
are additively separable; that is,

dit p
i
t, p

i
t−1, · · · , pit−Mi ,p−i

t

( )

� hit p
i
t, p

i
t−1, · · · , pit−Mi

( ) +∑

j��i
Hji

t pjt
( )

. (8)

Then we have App(2) � App(3) � . . . � App(N).
In Equation (8), the function hit(·) represents the part

of the demand that depends on self current and past
prices, and the function Hji

t (·) corresponds to the

contribution of price pjt to the demand of item i at time t.
Note that the result of Theorem 1 applies beyond the
context of optimizing retail promotions. Indeed, the
same result holds for a general binary nonlinear in-
teger program, where the objective function can be
expressed as a sum of functions, and each function
depends on at most two decision variables. The as-
sumption that the cross-item effects are additively
separable allows us to show that App(2) is equivalent
to App(N). As a result, it is sufficient to consider only
unilateral and bilateral (pairwise) contributions to
capture all the cross-item effects. This assumption is
satisfied by several demand functions such as the log-
linear model with linear cross-terms (see (12)) and the
linear cross-elasticitiesmodel (see (13)). Thesemodels
are often used in practice because they can be easily
estimated from data. That said, one could consider
alternative demand models that do not satisfy this
assumption. In this case, App(2) is not necessarily
equal to App(N). Nevertheless, we have observed
computationally that the performance of App(2) is
often satisfactory because it provides a good ap-
proximation of the cross-item effects. As expected, the
App(2) solution coincides with theMulti-POP optimal
solution under one of the following four conditions:
(1) T � 1, (2)Mi � 0, ∀i, (3) Li � 1, ∀i, or (4) Si ≥Mi, ∀i.
Indeed, under one of these conditions, the time effects
(i.e., the impact of past prices on current demand) are
not present, so we remain only with cross-item effects
and thus obtain an optimal solution.
More generally, one can refine the App(2) approx-

imation to be optimal under the following condition.

Corollary 1. If the function hit(pit, pit−1, . . . , pit−Mi ) is addi-
tively separable for each item i � 1, . . . ,N, that is,

hit p
i
t, p

i
t−1, . . . , p

i
t−Mi

( )

� f it pit
( ) + gi1 pit−1

( ) + . . . + giMi
pit−Mi

( )
, (9)

then the App(2) solution is optimal.

In Equation (9), the function f it (·) represents the part
of the demand that depends on the current self-price pit,
whereas the function giu(·) for u � 1, . . . ,Mi captures
the part of the demand that depends on pit−u. Corollary 1
assumes that past and current self-prices are also
additively separable. For example, this assumption is
satisfied for a linear demand function. In this case, one
can extend the definition of theApp(2) approximation
to include all pairwise contributions of two simul-
taneous promotions: both for different items at the
same period and for the same item at different periods
(within Mi consecutive periods). In this case, all the
pairwise interactions are accounted for, so the App(2)
methodwill lead to an optimal solution.We note that,
ultimately, the key for App(2) to be optimal is the ad-
ditively separable property of the demand function.
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We return to the more general demand function
in (8), for which we can solve the Multi-POP by ap-
plying App(2) and accurately capture the cross-item
effects. We are now interested in the following
two questions:

1. As discussed earlier, to solve App(2), one needs
to solve an integer program with a quadratic number
of variables in N and K. Can we show that the LP
relaxation of App(2) is integral so that we can solve
App(2) efficiently as a linear program? Is the feasible
region totally unimodular, as it is for App(1)?

2. Recall that for additively separable cross-item
effects, we have App(2) � App(N). However, App(2)
does not always yield an optimal solution because
an approximation error is induced by the effect of
past prices for demand functions that are not addi-
tively separable as in (9). Can we derive a bound on
the performance of the solution obtained from App(2)
relative to the optimal solution?

The rest of this section is devoted to answering
these two questions.

3.1. Integrality of App(2)
As discussed earlier, the App(2) formulation requires
the addition of four consistency constraints for each
time, pair of items, and pair of promotion prices. As
expected, adding this set of constraints modifies the
feasible region of the Multi-POP. As shown by Cohen
et al. (2017), the single-item problem—which uses
App(1)—has a tight LP relaxation because the con-
straint matrix is totally unimodular. We can show
that in the absence of cross-item business rules, this
property is preserved for the Multi-POP because the
feasible region for each item is totally unimodular.
As a result, App(1) leads to an integral formulation.
Although this is not the case for App(2), we can show
the following result.

Theorem 2. Consider an additively separable demand as
in (8) and Ki � 1 (i.e., the price ladder consists of the regular
price and one promotion price). For substitutable items,
the App(2) formulation is always integral in the absence of
business rules.

Proof. We prove the result of Theorem 2 by using the
two following lemmas.

Lemma 1. Consider an additively separable demand as
in (8)with substitutable items. Then the cross-coefficients for
App(2), bijt , ∀i, j > i, and ∀t are nonnegative.

The proof of Lemma 1 can be found in the appendix.
Aswe show in the proof of Lemma 1, under additively
separable demand, the coefficient bijt reduces to bijt �
(q0 − pit)[Hji

t (q0) −Hji
t (pjt)] and hence is easy to analyze

and interpret.

We next consider the following optimization prob-
lem, called the unconstrained binary quadratic pro-
gram (UBQP):

UBQP( )max
x

∑N

i�1
bixi +

∑

i

∑

j>i
bijxixj

s.t. xi ∈ 0, 1{ }, ∀i.

Lemma 2. If all the cross-coefficients bij are nonnegative,
one can solve the UBQP by a linear program.

Lemma 2 follows from Rhys (1970), who has shown
that the selection problem of shared fixed costs is
integral because it can be viewed as a network flow
formulation. More precisely, we can reformulate the
UBQP as an integer program by defining a new
variable for each pair of items i, j > i, denoted by xij,
and adding the following consistency constraints:

xij ≤ xi, xij ≤ xj, xij ≥ 0, xij ≥ xi + xj − 1.

Note thatwhen bij ≥ 0, the last constraint is redundant
and can be omitted. In this case, the variable xij is equal
to the product xixj. Note also that the xij variables are
continuous, whereas the xi variables are binary. In
addition, LP relaxation is not generally tight because
the constraint matrix, which is composed of the
consistency constraints, is not totally unimodular.
Indeed, as shown by Padberg (1989), every vertex in
the linear approximation to UBQP is {0, 12 , 1}-valued,
so the constraint matrix is not totally unimodular.
When all the cross-coefficients bij are nonnegative,
however, the result of Lemma 2 follows directly from
Rhys (1970).
We next conclude the proof of Theorem 2. By using

the results of Lemmas 1 and 2, we can solve the UBQP
as a linear program when the items are substitut-
able. Recall that the App(2) approximation solves
the problem with (4) as an objective, which can be
equivalently rewritten in the form of the UBQP. □

The result of Theorem 2 shows that there exists an
integral solution to the LP relaxation. To arrive at an
integral solution, we need to use the iterative rounding
procedure given in the proof of Lemma 1. Theorem 2
admits the following geometric interpretation. As
discussed earlier, the matrix of the feasible region of
App(2) is not totally unimodular. Consequently, some
of the extreme points can be fractional. By considering
an additively separable demand with substitution
effects, we ensure that the objective will induce the
optimal solution to always lie on integer extreme
points. Therefore, we can solve the LP relaxation and
obtain an integer solution efficiently.
In Theorem 2, we assume that each item can have

two prices: the regular price q0 and the promotion
price qi1 < qi0. This case is common in practice because
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the promotion price is often negotiated upfront with
the manufacturer via trade funds and other con-
tractual agreements. Subsequently, the retailer needs
to decide when to schedule the promotions of the
different items. In the more general case where the
retailer can choose among more than two promotion
prices, the IP formulation is not guaranteed to be
integral anymore. In such a case, as we will show in
Section 5, one can still solve the integer program in
low run times for realistic-size instances.

We highlight that in most supermarket categories,
the items are either independent (i.e., no cross-item
effects) or substitutable. For categories such as coffee,
tea, and chocolate, we could not find any comple-
mentarity effects in the data we analyzed. Note also
that even if some items are complements, we ob-
served by extensive testing thatApp(2) often yields an
optimal integer solution. Specifically, we considered
a computational experiment based on 10,000 random
instances with N � 5 and K � 2, in which the cross-
price sensitivity values are randomly generated (more
details on the instances are presented in Section 5).
We then observed the following: (1) the App(2) so-
lution was integral 99% of the time (in the absence of
cross-item constraints) and (2) 91% of the time in the
presence of cross-item constraints. More details on
our computational tests are presented in Section 5. In
addition, recall that in most applications, we only
have substitution effects, so App(2) is always integral
in the absence of business rules. Finally, we observed
by extensive computational testing that even in the
presence of business rules, App(2) yields an integral
solution most of the time.

We next discuss the properties of the polytope from
Lemma 2—called the Boolean quadric polytope—for the
general case when cross-coefficients are not neces-
sarily nonnegative. It is known from Padberg (1989)
that every vertex of the LP relaxation of a Boolean
quadric polytope is {0, 12 , 1} valued. Using section 6 of
Padberg (1989), there exist sufficient conditions for LP
integrality, even when not all the cross-coefficients
are nonnegative. Two such cases are the following:
(1) when the set of items is acyclic and (2) when the
items are pairwise complementary.

Corollary 2. Consider an additively separable demand with
Ki � 1 in the absence of business rules. Then we have

a. For a set of items (either substitute or complement)
that corresponds to a forest in the graph, the App(2) for-
mulation is always integral. In this case, the graph cor-
responding to the set of items is acyclic.

b. For a set of pairwise complementary items (i.e.,
bij ≤ 0) that can be transformed into a bipartite graph, the
App(2) formulation is always integral.

In Corollary 2, we use a graphical way of repre-
senting the N items so that items i and j are connected

via an edge in the graph if bij �� 0. In practice, the
conditions of Corollary 2 are not easy to motivate in
most retail settings, whereas the case where all the
cross-coefficients are nonnegative is very common.
Indeed, in most retail categories, the different items
are either independent (i.e., bij � 0) or substitut-
able (i.e., bij > 0).

3.2. Rounding Schemes for App(2)
Because solving the LP relaxation of App(2) does not
always lead to an integral solution, we next explore
different schemes to round the fractional solution to
make it integral. We first discuss a naive rounding
scheme. We then introduce three rounding schemes
based on iteratively resolving the LP relaxation. We
next show analytically the convergence and integrality-
preservation property of these rounding schemes. Fi-
nally, in Section 5.3, we compare computationally
the performance of our rounding schemes relative
to the App(2) solution by directly solving the inte-
ger program.

3.2.1. Naive Rounding Scheme. We first consider a
naive scheme, obtained by rounding all the fractional
variables in the LP solution to zero. Note that this
rounding scheme guarantees that the new rounded
solution is feasible. Because the solution is always
{0, 12 , 1} valued, all the fractional variables are neces-
sarily equal to 1

2. We next separate the analysis into
two cases.
Case 1: There exists at least one fractional x∗i . Be-

cause xij ≤ xi,∀ j, then all the corresponding x∗ij can
only be zero or 1

2. If x
∗
ij � 0, then we do not need to

round x∗ij, and hence the constraint xij ≥ xi + xj − 1will
still hold (the left side remains the same and the right
side decreases). If x∗ij � 1

2, then it would be rounded
down to zero. In this case, the new solution will be
feasible if 0 ≥ xj − 1, and this naturally holds because
all xj are less than or equal to one.
Case 2: There is no fractional x∗i . In this case, if we

have a fractional x∗ij, it would be rounded to zero.
Given the constraints xij ≤ xi and xij ≤ xj, the corre-
sponding x∗i and x∗j must be equal to one. In this case,
however, the constraint xij ≥ xi + xj − 1 cannot be
satisfied by the original solution, so this case can-
not exist.
Although the feasibility of the rounded solution is

guaranteed, we will see from our computational tests
that the preceding naive rounding scheme does not
yield a goodperformance. In particular, the gap between
the objective value and the optimal mixed-integer pro-
gramming objective was found to be as large as 40% in
our tested instances. This motivates us to propose more
sophisticated rounding schemes that can still preserve
feasibility while providing a better performance.

2349
Cohen, Kalas, and Perakis: Promotion Optimization for Multiple Items
Management Science, 2021, vol. 67, no. 4, pp. 2340–2364, © 2020 INFORMS



3.2.2. Greedy Iterative Rounding Scheme (Rounding
Scheme 1). We next consider a rounding scheme
that involves reoptimization. In this scheme, we in-
spect all the parameters bi that correspond to a frac-
tional x∗i (if any). We then separate the procedure into
three cases:

1. If there is no negative bi, we increase the frac-
tional x∗i with the highest bi to one;

2. If all bi values are negative, we decrease the
fractional x∗i with the lowest bi to zero; and

3. Otherwise, we compare the objective value of
increasing the fractional x∗i with the highest bi to
one relative to the objective value of decreasing the
fractional x∗i with the lowest bi to zero while keeping
all other x∗i values unchanged. We then choose to add
the constraint that yields the largest objective value
(either xi � 1 or xi � 0).

We next resolve the LP relaxation problemwith the
additional constraint xi � 1 or xi � 0. We iteratively
repeat the preceding procedure until all xi values are
integral. Once all xi values are integral, we can obtain
the values of xij using xij � xi × xj. We next show that
the new solution is feasible and that the preceding
reoptimization procedure converges and satisfies the
integrality-preservation property.

Proposition 1. The integral xi values from the original
App(2) solution keep the same value in the new solution
obtained from reoptimizing with the constraint xk � 1 or
xk � 0, for some k �� i.

The proof of Proposition 1 can be found in the
appendix. Using Proposition 1, the number of frac-
tional xi variables decreases in each iteration. Because
we have a finite number of xi variables, we conclude
that our reoptimization rounding procedure con-
verges in a finite number of iterations.

3.2.3. Exhaustive Greedy Iterative Rounding Scheme
(Rounding Scheme 2). We next consider an alterna-
tive rounding scheme also based on reoptimization.
In the preceding scheme, we only considered the
coefficients bi in a greedy iterative fashion. This pro-
cedure ignores the pairwise effects among different
items and focuses on local objective improvements.
To mitigate this issue, we propose the following
rounding scheme. Instead of increasing or decreasing
the fractional variablewith the highest or lowest bi, we
exhaustively try all fractional variables in each iter-
ation. Assume that we have solved the LP relaxation
and obtained 0 < K ≤ N fractional variables xi. We
then consider increasing each fractional xi to one if its
bi is nonnegative and decreasing it to zero if its bi is
negative. For each fractional xi, we resolve the opti-
mization problem with the appropriate additional
constraint. At this point, we have solved K optimi-
zation problems. We compare the K objective values

and choose to add the constraint xk � 0 or xk � 1,
which leads to the highest objective. We iterate the
preceding procedure until all xi variables are integral
and compute the values of xij using xij � xi × xj.We can
see that this rounding scheme satisfies the conver-
gence and integrality-preservation properties from
Proposition 1.

3.2.4. Second-Order Greedy Iterative Rounding Scheme
(Rounding Scheme 3). We finally consider one last
reoptimization rounding scheme. In the previous
rounding schemes, we did not account for network
effects (i.e., the fact that changing the value of xi may
ultimately affect some connected variables xj, j �� i).
We next propose a refined version of Rounding
Scheme 1 that partially accounts for network effects.
More precisely, instead of comparing the values of bi
for all fractional x∗i variables in the original optimal
solution, we now compare bi +∑

j bij, where j is such
that the x∗j variables are equal to one and connected
to x∗i in the original optimal solution. The rounding
scheme proceeds as follows:
1. If there is no i with a negative bi +∑

j bij, we in-
crease the fractional x∗i with the highest bi +∑

j bij
to one;
2. If all bi +∑

j bij values are negative, we decrease
the fractional x∗i with the lowest bi +∑

j bij to zero; and
3. Otherwise, we compare the objective value of

increasing the fractional x∗i with the highest bi +∑
j bij

to one relative to decreasing the fractional x∗i with
the lowest bi +∑

j bij to zero and add the constraint
that leads to the largest objective value (either xi � 1
or xi � 0).
We next resolve the LP relaxation problemwith the

additional constraint xi � 1 or xi � 0. We iteratively
repeat the preceding procedure until all xi values
are integral. Once all xi values are integral, we can
obtain the values of xij using xij � xi × xj. We can
see that this rounding scheme satisfies the conver-
gence and integrality-preservation properties from
Proposition 1.
We test computationally all four rounding schemes

in Section 5.3.

3.3. Performance Bound
We next present a performance guarantee for the
App(2) solution relative to the optimal Multi-POP
solution. We consider a multiplicative demand with
additive cross-item effects such as the log-linear model
with additive linear cross-effects (see (12)). More pre-
cisely, the demand of item i at time t can be written as

dit � f it pit
( ) · gi1 pit−1

( ) · gi2 pit−2
( ) · · · giMi pit−Mi

( ) +∑

j ��i
Hji

t pjt
( )

,

(10)
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where the first product ofMi + 1 functions represents
the effect of item i’s prices, and the second term
corresponds to the additive cross-item effects induced
by the other items j �� i. For the demandmodel in (10),
we develop the following parametric bound.

Corollary 3. Let γMPOP be an optimal solution of Multi-
POP and γApp(2) be an optimal solution of the App(2) ap-
proximation. Then, when all the items are substitutes,
we have

1 ≤ MPOP γMPOP
( )

MPOP γApp 2( )( ) ≤ 1
RM

, (11)

where RM � minj�1,2,...,N
∏L̃i−1

i�1 gji·(Si+1)(qjK
j ), with RM � 1

by convention, if L̃i � 1 for all i � 1, 2, . . . ,N.

Here L̃i denotes the effective maximal number of
promotions for item i and is defined as

L̃i � min Li, Ñi{ }
, where Ñi � T − 1

Si + 1

⌊ ⌋

+ 1.

We assume that Li ≥ 1 (the case of Li � 0 is not inter-
esting because no promotions are allowed for item i).
Because Ñi ≥ 1, we also have L̃i ≥ 1.

The result presented in Corollary 3 can be shown in
the same way as theorem 1 of Cohen et al. (2017), and
hence we omit the proof for conciseness. In Cohen
et al. (2017), the authors show that in a single-item
setting, the App(1) approximation yields a provably
good performance by deriving a parametric bound in
closed form. In Corollary 3, we extend such a guar-
antee to the setting with multiple substitutable items.
We make the following observations. First, in the
setting with multiple items, we needs to consider
the App(2) approximation instead of App(1). Second,
because App(2) � App(N) under additively separable
demandmodels, the only approximation is in terms of
the dependence on past prices. Third, we show that
the same bound as in the single-item setting holds,
just that now the bound is driven by the item with the
lowest-valued g(·) function.

Consequently, the good performance of the bound
from the single-item setting is preserved. Indeed, the
parametric bound RM is characterized by the worst
value ofRi for each item i � 1, 2, . . . ,N. As discussed in
Cohen et al. (2017) for the single-item setting, this
bound yields a good performance guarantee for a
wide range of practical instances. Consequently, it
also performs well for the multiple-item setting. By
considering several instances of the log-linear model
with additive linear cross-effects (see (12)), we ob-
serve that the bound was always within 30% of
optimal. We can also show the following compara-
tive statics: the value of 1/RM improves (i.e., gets
closer to one) when (1) Li decreases, (2) Si increases,
and (3) qjK

j
increases.

More important, recall that the bound from (11) is
only a theoretical performance guarantee, whereas in
practice the ratio (MPOP(γMPOP))/(MPOP(γApp(2))) is
often much closer to one. We can also show that the
boundpresented inCorollary 3 is (asymptotically) tight
in a similar fashion as in Cohen et al. (2017). Finally,
recall that for the additive demandmodel from (9), the
App(2) method always leads to an optimal solution.

4. Insights
In this section, we present several managerial insights
drawn from our promotion optimization problem.
We first show that our model can capture the loss-
leader effect, which is often observed in retail envi-
ronments. We then consider a simple symmetric
setting allowing us to investigate the impact of sub-
stitution and complementarity on the optimal pro-
motion strategy.

4.1. Loss Leader
The loss leader is a common phenomenon in which
one item is priced below cost to extract significant
profits from complementary items (Hess and Gerstner
1987). Examples include a printer and cartridges
and a video console and games. We next present an
illustrative example to convey that our promotion
optimizationmodel can capture the loss-leader effect.
We consider an example of complementary items and
show that the optimal promotion strategy leads to a
loss leader. We consider a setting with N � 4 items
and T � 1, where item 1 is the leader (e.g., the printer)
and items 2, 3, and 4 are the complements (e.g.,
cartridges). We then consider a linear demand model
d(p) � d̄ − βM̃p with a price-sensitivity matrix given by

M̃ �
1 r/2 r/2 r/2
r/2 1 0 0
r/2 0 1 0
r/2 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here r represents the degree of complementarity
between the leader and the complements. In addition,
we assume that the complements are independent of
each other. We assume that the cost of each item is
c � 0.4, the regular price is q0 � 1, and the promotion
prices can be any price between zero and one with
0.02 increments. We then solve the unconstrained
Multi-POP and plot the optimal solution in Figure 1.
We can see that when r � 0 (i.e., independent items), it
is optimal to have no promotion. When the degree of
complementarity r increases, it becomes optimal to
promote item 1 (the leader) but never the comple-
ments. When r is large enough (in this example
r > 0.66), it becomes optimal to set the price of the
leader below cost. Consequently, this illustrates that
our model can capture the situation where it may be
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optimal to sell an item below cost to extract positive
profits from complementary items.

4.2. Cross-Item Effects
We next present several insights related to the impact
of cross-item effects on promotion planning. Specif-
ically, we consider solving the Multi-POP and ex-
amine the impact of cross-item effects on the optimal
solution. For simplicity, we consider a setting with N
identical items (i.e., the same demand function, cost,
and price ladder) in the absence of business rules. In
addition, we assume that the demand function does
not depend on past prices (i.e., Mi � 0 ∀i). These
simplifying assumptions allow us to isolate and focus
on the impact of the cross-item effects. The results are
summarized in Table 1.5

We can see from Table 1 that for N substitutable
items, it is either optimal to promote all the items at all
times or to not promote at all. In particular, it depends
on the magnitude of the substitution effect. Under
strong substitution effects, promoting an item in-
creases its own sales but at the same time decreases
the sales of the other items. As a result, we are better
off by not promoting at all. When the substitution
effects are mild, the benefit of promoting one item
overcomes the loss from cannibalization so that it
becomes preferable to promote all the items (more
details can be found in Section 5.5).

For N complements, the conclusions are reversed.
Under strong cross-item effects, promoting one item

yields larger sales from that particular item and at the
same time increases the sales of other items. As a
result, we are better off by promoting all the items at
all times. This result is surprising because we would
think that when two items are complements, it is
enough to promote only one of them. However, recall
that we assume a symmetric setting where any pair of
items i and j �� i are complements. Then, promoting
item i enhances the sales of both items i and j, and
promoting item j has the same effect. In other words,
by promoting both items, some additional buyerswill
be incentivized to purchase the complementary item.
Undermild cross-item effects, promoting all the items
is not optimal anymore. In this case, the benefit from
the complementarity is not larger than the price de-
crease. It thus becomes optimal to promote only a
subset of items (the size of the subset depends on the
magnitude of the complementarity effect).
In practice, supermarkets solve the Multi-POP for

large-scale instances that involve asymmetries, sea-
sonality, postpromotion dip, substitutes, and com-
plements, as well as several business rules. It is not
easy to plan promotionswhile accounting for all these
conflicting trade-offs. This suggests the need for an
optimization tool, such as the one developed in this
paper. Our model and approach can account for the
different trade-offs and compute a near-optimal so-
lution for the promotion planning problem. In ad-
dition, because our methods are solved in low run
times, we can perform a sensitivity analysis that
can test how the promotion planning is affected by
changes in demand parameters or in business rules.
This allows category managers to reach a better un-
derstanding on how several behavioral effects—such
as the postpromotion dip effect and cross-item effects—
impact promotion decisions.

5. Computational Experiments
In this section, we conduct computational tests to
evaluate the performance of the App(2) approxima-
tion method in terms of tightness and run time. We
also examine the interplay between the postpromotion
dip effect and cross-item effects.

5.1. Computational Setting
We consider a realistic demand model inspired by
our collaboration with supermarket retailers. Spe-
cifically, we consider two types of demand models6:

Table 1. Summary of Multi-POP Insights on Cross-Item Effects

Scenario Mild cross-item effects Strong cross-item effects

N substitutes Promote all items at all times No promotions
N complements Promote only a subset of items Promote all items at all times

Figure 1. (Color online) Illustration of the
Loss-Leader Effect
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• A log-log model with additive linear cross-item effects:

dit � ait exp − bi0 log pit
( ){ }∏Mi

k�1
pit−k
( )bik+∑N

j�1
δjipjt. (12)

• A linear model with additive linear cross-item effects:

dit � ait − bi0p
i
t +

∑Mi

k�1
α

1
2

( )k−1
pit−k +

∑N

j�1
δjipjt. (13)

Note that both models have additively separable
cross-item effects and are special cases of (8). As a
result, the App(2) approximation is equivalent to
App(N). For both models (12) and (13), we calibrated
the different parameters using actual data from the
coffee category of a large supermarket retailer. More
precisely, we estimated the following parameters:
ait (corresponding to seasonality effects), bi0 (price-
sensitivity factor), bik or α (which capture the effect
of past prices on current demand), and δji (cross-item
effects). In addition, we estimated the value of Mi by
removing the past prices that were not statistically
significant in our estimation. To thoroughly test the
robustness of our results, we further perturb the es-
timated demand models by randomly varying the
estimated parameters. Ultimately,we consider awide
range of realistic parameter values, summarized in
Table 2 (each parameter is randomly drawn from
the range of values shown in the table). To avoid
negative demand values, we focus on combinations of
parameters that yield nonnegative demand values.
Specifically, we randomly generate demand instances
using the range of parameters in Table 2, and if the
nonnegativity property is not satisfied, we drop the
instance and generate a new one.

Note that the cross-item coefficients δji are ran-
domly drawn from the range [0, ati]when the items are
substitutes and from [−ati , 0] when the items are
complements. In our tests, we consider several dis-
crete price ladders in the range [0.65, 1] (e.g., when
|Q| � 2, we use {0.65, 1}, and when |Q| � 3, we use
{0.7, 0.85, 1}). Interestingly, we observed that all our
qualitative insights hold for both demand models,

under the wide range of parameter values we consid-
ered. This suggests that our computational insights are
robust to the specific demandmodel under consideration.
Our computational environment consists of a 2015

Macbook Pro with 16 GB of random-access memory
and a 2.2-GHz processor using the Gurobi 7.02 Py-
thon interface.

5.2. Testing the Tightness
We examine the impact of both cross-item effects
and cross-item business rules on the tightness of the
App(2) approximation. In this context, tightness refers
to whether the mixed-integer program that charac-
terizes the App(2) approximation has an integral
LP relaxation. In Proposition 2, we showed that for
an additively separable demand with substitutable
items and a price ladder of size two, the App(2) ap-
proximation is tight in the absence of business rules.
In Figures 2 and 3, we explore the tightness of App(2)
in a setting with substitutes and complements, re-
spectively, and vary the size of the price ladder be-
tween two and four. For each value ofN, we randomly
sample 1,000 log-log demand functions from the

Table 2. Summary of the Range of Parameters Used in Section 5

Parameter Interpretation Log-log model in (12) Linear model in (13)

ait Seasonality [500, 1,000] [0, 60]
bi0 Price sensitivity [2, 7] [25, 75]
bik or α Past prices effects [0, bi0] [0.1, 1.5]
Mi Number of past prices {0, 1, 2, 3} {0, 1, 2, 3}
δji Cross-item effects [−ati , ati] [−ati , ati]
cit Cost of item i [0.65, 1] [0.65, 1]
Q Price ladder [max cit, 1] [max cit, 1]
N Number of items {5, 10, . . . , 150} {5, 10, . . . , 150}
T Number of time periods {1, 5, 10, . . . , 35} {1, 5, 10, . . . , 35}

Figure 2. (Color online) Proportion of Tight App(2)
Instances When All Items Are Substitutes
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parameter values in Table 2 and record the percentage
of instances where there is no integrality gap.7 For
each value of N, we report the average value and the
95% confidence interval. As expected, we can see that
under substitutable items, the App(2) solution is tight
much more often relative to the setting with com-
plements. In our tests, we observe that even with a
price ladder with four prices, the setting with sub-
stitutes was tight 96.5% (for N � 20) and 93% (for
N � 50) of the time, whereas the setting with com-
plements was tight 93% (for N � 20) and 86% (for
N � 50) of the time. Although the general App(2)
approximation is not always tight, we will show in
Section 5.4 that solving the mixed-integer program is
often possible in low run times.

In a typical category of products, not all items
have cross-item effects. It is common to observe that
within a set of N related different items, only a small
number of items are interacting. In Figures 4 and 5,we
test the tightness of the App(2) approximation when
the size of the price ladder is |Q| � 4, but we consider
that each item can only have (nonzero) cross-item
effects with at most five other items. For each data
point, we generate 1,000 independent samples and
report the percentage of tight instances. We can see
that for both substitutes (Figure 4) and complements
(Figure 5), the proportion of tight instances remains
high. These tests convey that for product categories
with sparse cross-item effects, the App(2) optimiza-
tion model can be solved efficiently by running a
linear program.

We next examine the impact of adding business rules
to the formulation. We consider a setting with N � 10
items and a price ladder with |Q| � 2 prices. Based on
10,000 randomly generated instances, we observe
that App(2) was always integral in the presence of

self-business rules (i.e., constraints for each item
separately). We then examine the impact of adding
cross-item business rules on the tightness of the
App(2) approximation. For each data point, we solve
1,000 randomly generated instances with a log-log
demand function and additive mixed cross-item ef-
fects (i.e., either substitutes or complements) and
record the percentage of tight instances. For sim-
plicity, we focus on instances with T � 1. In Figure 6,
we test the impact of imposing a limit on the total
number of promotions LT, as discussed in (2). We can
see that the problem tends to be tight when LT is either
large or small. In Figure 7, we consider a setting with
N � 10, T � 10, and |Q| � 2 and test the impact of

Figure 3. (Color online) Proportion of Tight App(2)
Instances When All Items Are Complements

Figure 4. (Color online) Proportion of Tight App(2)
Instances When Items Are Substitutes with at Most Five
Other Items

Figure 5. (Color online) Proportion of Tight App(2)
Instances When Items Are Complements with at Most Five
Other Items
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imposing a cross no-touch constraint in which suc-
cessive promotions for any pair of items need to be
spaced out by at least Sc periods. For each value of Sc,
we generate and solve 1,000 App(2) instances and
record the percentage of tight instances. Even in the
presence of a cross no-touch constraint, the App(2)
model is tight more than 90% of the time in our tested
instances. For settings where the App(2) model is not
guaranteed to be tight (e.g., a price ladder with more
than two prices or in the presence of business rules),
we propose to use one of the two following solutions:
(1) implementing our proposed rounding schemes
or (2) directly solving the mixed-integer program
formulation instead of relying on the LP relaxation.
In Section 5.3, we test our rounding schemes, whereas
in Section 5.4, we show computationally that for

many tests, the mixed-integer program solves within
acceptable run times for retail applications.

5.3. Testing the Rounding Schemes
We next conduct computational tests to compare our
different rounding schemes. We consider the fol-
lowing demand model for item i:

di � ai exp −bi0 log pi
( ){ } +∑N

j�1
δijpj. (14)

The range of parameter values is reported in Table 3.
We randomly generate 5,000 independent instances
for each value of the number of items N. To keep our
tests general, the items in each instance can be sub-
stitutable, complementary, or not connected to the
other items. For simplicity of exposition, we consider
instances with small values of N. We will consider
large-scale practical instances in Section 5.6.
We first plot the proportion of instances with the

same solution as the optimal mixed-integer program
solution in Figure 8. Aswe can see, the naive rounding
scheme performs the worst, whereas our three pro-
posed rounding schemes often lead to the same so-
lution as the mixed-integer program.
We then plot the average and maximum (Figure 9)

difference between the objective value and the optimal

Figure 6. (Color online) Proportion of Tight App(2)
Instances with a Constraint on the Number of Promotions

Figure 7. (Color online) Proportion of Tight App(2)
Instances with a Cross No-Touch Constraint

Table 3. Range of Parameters for Comparing
the Rounding Schemes

Parameter Range

ai [500,1,000]
bi0 [2,7]
δij [−ai, ai]
ci [0.45,0.55]
Q [max ci, 1]
N {5,6,. . .,20}

Figure 8. (Color online) Proportion of Instances with the
Same Solution as the Mixed-Integer Program
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mixed-integer program objective for each rounding
scheme. As expected, the naive rounding scheme can
yield a low performance: an average loss of 10% and a
maximum loss of 100% (such an outcome happenswhen
all xi values are fractional in the LP original solution).
By contrast, our three proposed rounding schemes
lead to a near-optimal solution: the average gap is
lower than 2% in all our tested instances for all three
rounding schemes. As expected, the performance of
Rounding Scheme 2 is always slightly better than the
performance of Rounding Scheme 1.

Finally, we report the average and maximum
(Figure 10) number of reoptimizing iterations (i.e., the
number of iterations needed to reach an integral so-
lution) for our three proposed rounding schemes. For
Rounding Schemes 1 and 3, each iteration corre-
sponds to solving a single linear program, whereas
for Rounding Scheme 2, it can correspond to solving
several linear programs. We observe that the num-
ber of reoptimizing iterations remains small across
all three rounding schemes. As expected, Rounding
Scheme 2 usually requires a larger number of re-
solving iterations.

Given that Rounding Scheme 2 needs a larger number
of iterations than Rounding Scheme 1, the slight per-
formance improvement may not be enough to justify
using Rounding Scheme 2. In summary, we conclude
that the greedy rounding scheme (i.e., reoptimization
Rounding Scheme 1) is a good candidate for solving our
problem: (1) it yields the same solution as the mixed-
integer program most of the time, (2) when it does not,
the optimality gap is low, and (3) the required number of
resolving iterations is small—thus making this scheme
efficient and applicable to large instances, as illus-
trated in Section 5.6.

5.4. Testing the Run Times of the
Mixed-Integer Program

We next investigate how the run time of App(2) is
affected by the different input parameters. We use
two different performance metrics: (1) the time to
build the model, that is, computing the coefficients
of all unilateral and bilateral contributions, called
building time, and (2) the time to solve the model via
the mixed-integer program, called solving time. In
Figures 11 and 12, we report the model building and

Figure 9. (Color online) Average and Maximum Difference between the Objective Value and the Optimal Objective

Figure 10. (Color online) Average and Maximum Number of Reoptimizing Iterations
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solving times, respectively. We consider a setting
with T � 1, vary the size of the price ladder, and vary
the number of items between 10 and 100. For each
value of N, we randomly sample 100 independent
log-log demand functions with additive cross-item
effects. We then record the maximum run time (in
seconds) observed over the 100 samples.

One can see that most of the total run time is spent
building the model. Building the model consists of
calculating all the unilateral and bilateral coeffi-
cients needed for the App(2) formulation (we have
O(N2|Q|2T) such coefficients).8 Nevertheless, once the
model is built, solving a single instance can be done
very fast. In practice, this is a desirable feature because
the addition or modification of business rules does not
affect the model, so we do not need to build the model

again when varying the specifics of the business rules.
As a result, it can allow retailers to efficiently test
several what-if scenarios with respect to changes in
business rules.
Finally, in Figures 13 and 14, we examine the total

run time to build and solve the mixed-integer pro-
gram. In Figure 13, we consider a setting with T � 1
and randomly sample 100 log-log demand functions
with additive cross-item effects while varying N
and |Q|. In Figure 14, we use |Q| � 2 and vary N over a
wider range of values. For each test, we record the
maximum run time over the 100 samples. We can see
that the App(2)method can be solved efficiently even
for categories with more than 100 items. In addition,
for settings with a price ladder of size two (i.e., facing
decisions of whether to promote or not), we can solve

Figure 11. (Color online) Building Time of the App(2)
Mixed-Integer Program Model

Figure 12. (Color online) Solving Time of theApp(2)Mixed-
Integer Program Model

Figure 13. (Color online) Total Run Time of the App(2)
Mixed-Integer Program Model

Figure 14. (Color online) Total Run Time of the App(2)
Mixed-Integer Program Model with T � 1 and |Q| � 2
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instances with a large number of items in a reason-
able timeframe.

5.5. Interplay of Time and Cross-Item Effects
In addition to testing the performance of the App(2)
approximation, we conduct computational experi-
ments to observe general trends in the optimal
promotion strategy in the presence of time effects
(i.e., postpromotion dip) and cross-item effects
(i.e., substitution and complementarity). In this
section, we consider a realistic setting with T � 35,
N � 10 symmetric items, and a price ladder with four
price points (1, 0.9, 0.8, and 0.7). We use a linear
demand model calibrated with data from the coffee
category of a large retailer with bi0 � 50, α � 15, and
vary the magnitude of the cross-item effects δ be-
tween−50 and 50. Our goal is to examine the interplay
between α and δ, aswell as their impact on the optimal
promotion strategy. For each value of δ, we report the
optimal number of promotions from the App(2) so-
lution in Figure 15. We can see that for complemen-
tary items (i.e., when δ < 0), the App(2) solution leads
to offering more promotions, whereas the number of
promotions decreases for substitutable items. This
outcome is expected because when δ becomes large,
promoting an item decreases the sales of other items
via a cannibalization effect.

We next vary the time-effect parameter α for dif-
ferent values of δ. We consider the same setting as in
Figure 15, but we now vary the effect of past prices on
current demand. Specifically, we consider a linear
demand model with a memory of three past prices
(Mi � 3 for all i), where the effect of the past price pt−i
on current demand is equal to α(12)i−1 for i ∈ (1, 2, 3)
and zero otherwise. In Figure 16, we report the total
number of promotions from solving App(2) as a

function of α for three different values of δ. We can see
that the number of promotions increases as α de-
creases. This follows from the fact that when α is
larger, promotions will reduce future demand and
hence are less desirable. In addition, we can see
that in a setting with complements (i.e., when δ < 0),
the optimal strategy will have a higher number
of promotions.

5.6. Computational Experiments for
Larger Instances

In this section, we consider large-scale practical in-
stances. In most retail categories (e.g., soft drinks,
cereals, and yogurts), there can be 30–150 different
items. We vary the number of items N � 50, 100,
150, 200, and 250. For each value of N, we consider
several independent instances. As earlier, we con-
sider that the demandmodel for item i is given by (14).
The range of parameters and number of instances
are reported in Tables 4 and 5 (for efficient compu-
tations, we decrease the number of independent
instances as N increases). For simplicity, we con-
sider two prices (i.e., Ki � 1) and a single time pe-
riod (i.e., T � 1).
For each instance, we (1) solve the mixed-integer

program, (2) solve the App(2) approximation solution

Figure 15. (Color online) Total Number of Promotions as a
Function of Δ When T � 35, N � 10, and |Q| � 4

Figure 16. (Color online) Total Number of Promotions as a
Function of α When T � 35, N � 10, and |Q| � 4

Table 4. Range of Parameters for Section 5.6

Parameter Range

ai [500,1,000]
bi0 [2,7]
δij [−ai/5, ai/5]
ci [0.45,0.55]
Q [max ci, 1]
N {50,100, . . . ,250}
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via LP relaxation, and (3) compute the proportion
of tight instances. Given that we do not restrict the
parameters in any way, we obtain a large proportion
of instances that are not integral, especially whenN is
large. We can see from the left panel of Figure 17 that
the percentage of tight instances decreases rapidly as
N increases.

For nonintegral instances, we implement the greedy
reoptimization rounding scheme (Rounding Scheme 1)
and compare its solution to the optimal mixed-integer
program solution in terms of both the objective value
and the run time (see the right panel of Figure 17, where
we report the maximum run times for different values
ofN).When the number of items is large, it can take up
to several days to solve the mixed-integer program:
it took 500,000 seconds = 5.787 days for N � 250.
However, using Rounding Scheme 1, we can obtain a
feasible integral solution in 1–20 minutes. Further-
more, the objective value was always within 95%
of the mixed-integer program optimal objective in
all our tested instances. Finally, for a realistic in-
stance with N � 100 and T � 10, our method runs in
2–4 minutes.

6. Conclusions
In many retail settings, promotions are a key in-
strument for driving sales and profits. In a typical
supermarket, each category manager needs to decide
on the promotion strategy for multiple items during

the selling season. The large volume of available data
allows retailers to improve demand forecasts. The
next step is to use these accurate demand forecast-
ing models to carefully decide future promotions to
maximize profits. In this paper, we introduce and
study a practical optimization formulation for decid-
ing on the promotions of multiple items. Our model
captures important business requirements and en-
compasses common demand models calibrated from
data. Solving this problem is relevant tomany retailers
and can significantly enhance their bottom line. How-
ever, optimally solving this problem is challenging be-
cause it involves a large-scale nonlinear integer pro-
gram. We propose a tractable approximation method
for solving this problem and present analytical and
computational results on the performance of the ap-
proximation solution.
We first show that a method based on linearizing

the objective does not perform well because it was
for a single item. We next consider a modified ap-
proach, called App(2), based on approximating the
objective with unilateral and pairwise contributions.
We show that when the demand has additively sepa-
rable cross-item effects, App(2) accurately captures the
cross-item effects without computing an exponential
number of coefficients. We further prove that when
the items are substitutable and the retailer decides
between two prices, the App(2) formulation admits a
tight LP relaxation in the absence of business rules.
For cases where the LP relaxation is not tight, we
propose three efficient rounding schemes. Armed
with these results, we show that the App(2) method
yields a solutionwith a parametricworst-case guarantee
relative to the optimal solution.
We next use our model to study the interplay be-

tween the postpromotion dip effect and cross-item
effects. We convey that when the degree of substi-
tution increases, it becomes optimal to reduce the

Table 5. Number of Instances as a Function of N

N No. of instances

50 1,000
100 500
150 200
200 100
250 50

Figure 17. (Color online) Proportion of Tight Instances and Maximum Run Time (in Seconds)
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number of promotions. We also conduct several com-
putational tests to show that the App(2) method can be
applied successfully in realistic instances.We first test
the tightness of the LP relaxation when the sufficient
conditions are relaxed. Inmost of our tested instances,
solving the LP relaxation leads to an integer solution.
We then show that solving the mixed-integer pro-
gram is relatively fast and can be done in reasonable
run times. Finally, we use our method to draw mana-
gerial insights on the interplay of the time and cross-
item effects. More generally, the results presented in
this research can guide retailers to test different pro-
motion strategies and sharpen their understanding of
promotion planning.
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Appendix. Proofs

Proof of Theorem 1. We show that all the coefficients of
order three and higher in the App(N) formulation are equal to
zero. It will then allow us to conclude that App(2) � App(N).
We first show that all the coefficients of order three (i.e., the
sets with three items simultaneously on promotion) are zero.
We then proceed by induction.

Recall that the coefficient for items i, j, and k at any time t is
given by (we drop the time index for clarity)

bijk � MPOP i, j, k
( ) −MPOP i, j

( ) −MPOP i, k( )
−MPOP j, k

( ) +MPOP i( ) +MPOP j
( )

+MPOP k( ) −MPOP 0( ). (A.1)
HereMPOP(i, j, k) denotes the total profit generated by the N
items throughout the T periods when only items i, j, and k are
on promotion at time t. Similarly, MPOP(j) denotes the total
profit when only item j is on promotion at time t. Note that all
the terms in (A.1) at times different from t are zero. Note also
that the coefficient in (A.1) affects only items i, j, and k and is
zero otherwise. As a result, we remain only with three
contributions (for items i, j, and k at time t). From symmetry in
the indices, it is sufficient to consider item i and show that its

contribution is zero. The contribution of (A.1) for item i at
time t is
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The last step follows from canceling terms (the details are
omitted for conciseness). Indeed, by using the additively
separable assumption of the demand function, we find that
the terms cancel each other out. Therefore, all the coefficients
with three items simultaneously on promotion are equal to
zero. We assume by induction that all the coefficients with
S � 4, 5, . . . ,K − 1 items are zero for some given K − 1 < N.
We next show that the claim is true for K.

Note that we have several coefficients that include K items
(one such coefficient for any subset of theN items with size K).
For example, the coefficient for items 1, 2, . . . ,K at time t is
given by

b12...K � MPOP 1, 2, . . . ,K( ) − All theK − 1[ ]
+ All the K − 2[ ] − . . .MPOP 0( ),

where the term [All the K – 1] refers to all the contributions of
having a total of K − 1 out of the K items on promotion.
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Alternatively, we can express the coefficient b12...K as a
function of the smaller-order coefficients as follows:

b12...K � MPOP 1, 2, . . . ,K( ) −MPOP 0( )
−∑

All bs with K − 1 items[ ]
−∑

All the bs with K − 2 items[ ]

− . . . − ∑

pairs
bij −∑K

j�1
bj.

By using the induction hypothesis, we obtain:

b12...K � MPOP 1, 2, . . . ,K( ) −MPOP 0( ) ∑
pairs

bij −∑K

j�1
bj.

(A.2)
Here MPOP(1, 2, . . . ,K) denotes the total profit generated by
all N items during the T periods, when only items 1, 2, . . . ,K
are on promotion at time t. We next look at the different types
of contributions of the coefficient in (A.2). We note that all the
terms at times different from t are zero. We also note that the
coefficient in (A.2) affects only the items 1, 2, . . . ,K and is zero
otherwise. From symmetry in the indices, it is sufficient to
consider item i and show that its contribution is zero. For item i
at time t, we have
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As before, the last step follows from canceling terms. Note
that all pairs of items where item i is not included have a
contribution of zero. □

Proof of Corollary 1. Corollary 1 can be shown in a similar
way as the proof of Theorem 1 by refining the definition of
App(2) to include all the pairwise contributions of two simul-
taneous promotions: both for different items at the same period
and for the same item within Mi consecutive periods. In this
case, when the function hit(pit, pit−1, . . . , pit−Mi) is additively sep-
arable for each item,wefind that the resulting objective function
can be expressed as a sum of functions, and each function
depends on at most two binary decision variables. Conse-
quently, the same argument as in Theorem 1 applies. □

Proof of Lemma1. Recall that the pairwise coefficient for items
i and j at time t is given by (we drop the time index for clarity)

bij � MPOP i, j
( ) −MPOP i( ) −MPOP j

( ) +MPOP 0( ). (A.3)
As before,MPOP(i, j) denotes the total profit generated by all
N items during the T periods when only items i and j are on
promotion at time t. We note that all the terms at times
different from t are zero. We also note that the coefficient
in (A.3) has three different types of contributions (for items i, j,
and k �� i, j at time t). We next show that each one of the three
contributions is nonnegative.

1. For item i at time t, we have
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We know that q0 ≥ pit (recall that q
0 is the regular price

and pit is a promotion price). Because items i and j are
substitutes, the function Hji

t (·) is nondecreasing, and thus,
Hji

t (q0) −Hji
t (pjt) ≥ 0. Consequently, the preceding contribu-

tion is nonnegative.
2. For item j at time t, the exact same argument follows

by symmetry.
3. For any item k �� i, j at time t, we have
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Proof of Proposition 1. If x∗k � 1
2 in the original solution, then

there are two possibilities for any integral variable xj that is
connected with xk (i.e., bkj �� 0): (1) xk � 1

2 , xj � 1, xkj � 1
2 or (2)

xk � 1
2 , xj � 0, xkj � 0. Without loss of generality, we assume

that there is one x∗j from each of these two cases and denote
these two variables x∗j1 , x∗j2 , respectively.

We can see that there must be at least one fractional so-
lution that is connected to xk because otherwise we can in-
crease the objective value by changing xk to either one or zero
while maintaining the other variables at the same values.
Without loss of generality, we assume that there is one such
fractional solution and denote it x∗j3 .

We denote the original optimal solution as X and its ob-
jective value as J(X). We assume by contradiction that the
original integral x∗ji does not remain the same in the new
reoptimized solution. We denote the new optimal solution
as X′ and its objective value as J′(X). We separate the analysis
into two cases.

Case 1: bk ≥ 0. In this case, the new solution is such that
x
′
k � 1. By assumption, there are two possibilities for x

′
j1

and x
′
kj1 in the new optimal solution: (a) x

′
j1 � 1

2, x
′
kj1 � 1

2, or
(b) x

′
j1 � 0, x

′
kj1 � 0. Similarly, for x

′
j2 and x

′
kj2 , the two possi-

bilities are (a) x
′
j2 � 1

2, x
′
kj2 � 1

2, and (b) x
′
j2 � 1, x

′
kj2 � 1

2. Because
our proof does not rely on any connection between x

′
j1 and x

′
j2 ,

we analyze these four scenarios separately and show that
none of them is possible for X′.

1a. If x
′
j1 � 1

2 and x
′
kj1 � 1

2, then we have J
′ (X) � bk + 1

2 bj1+
1
2 bkj1 +W1, where W1 denotes the remaining part of the ob-
jective, that is, all the contributions from the variables that are
not connected to k. With the additional constraint x

′
k � 1, we

can obtain a feasible solution X̃′, with x
′
j1 � 1, x

′
kj1 � 1, so that

J
′ (X̃′ ) � bk + bj1 + bkj1W0, where W0 is the remaining part of
the objective of X̃′. By the optimality of X

′
, we have

bk + 1
2
bj1 + 1

2
bkj1 +W1 > bk + bj1 + bkj1 +W0.

By comparingX and X̃′, we can see that only xk and xkj1 are
changing (otherwise, it would contradict the optimality ofX).
As a result, W0 is also the remaining part of the original
objective, and thus, J(X) � 1

2 bk + bj1 + 1
2 bkj1 +W0. Meanwhile,

X̃ is also feasible for the original problem without the ad-
ditional constraint, which is xk � 1

2 , xj1 � 1
2, xkj1 � 1

2 (if bkj1 ≥ 0)
and xkj1 � 0 (if bkj1 < 0), so J(X̃) � 1

2bk + 1
2bj1 + 1

2max{bkj1 ,0}+ W1.
Because X is an optimal solution of the original problem,
we have

1
2
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2
bkj1 +W0 ≥ 1

2
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2
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By summing up these two inequalities, we obtain
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1
2
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which is equivalent to 0 > max{bkj1 , 0}, so we reach a
contradiction.

1b. If x
′
j2 � 1

2 and x
′
kj2 � 1

2, then we have J′(X) � bk + 1
2 bj2 +

1
2 bkj2 +W1, where W1 denotes the remaining part of the

objective.With the additional constraint x′k � 1,we can obtain a
feasible solution X̃′ with x

′
j2 � 0, x

′
kj2 � 0, so J′(X̃) � bk +W0,

where W0 is the remaining part of X̃′. By using the optimality
of X

′
, we can write

bk + 1
2
bj2 + 1

2
bkj2 +W1 > bk +W0.

As in 1a, we can see that W0 is also the remaining part of
the original objective, so J(X) � 1

2 bk +W0. Meanwhile, X̃ is
also feasible for the original problem without the additional
constraint, which is xk � 1

2 , xj2 � 1
2, xkj2 � 1

2 (if bkj2 ≥ 0) and
xkj2 � 0 (if bkj2 < 0), so J(X̃) � 1

2 bk + 1
2 bj2 + 1

2max{bkj2 , 0} +W1.
Because X is an optimal solution of the original problem,
we have

1
2
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2
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2
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2
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{ } +W1.

By summing up these two inequalities, we obtain

3
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2
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2
bkj2 +W0 +W1

>
3
2
bk + 1

2
bj2 + 1

2
max bkj2 , 0

{ } +W0 +W1,

which is equivalent to bkj2 >max{bkj2 ,0}, so we reach a
contradiction.

Case 2: bk < 0. In this case, the new solution is such that
x′k � 0. By assumption, there are two possibilities for x

′
j1

and x
′
kj1 in the new optimal solution: (a) x

′
j1 � 1

2, x
′
kj1 � 0, or

(b) x
′
j1 � 0, x

′
kj1 � 0. Similarly, for x

′
j2 and x

′
kj2 , the two possi-

bilities are (a) x
′
j2 � 1

2, x
′
kj2 � 0, and (b) x

′
j2 � 1, x

′
kj2 � 0. As

before, because our proof does not rely on any connection
between x

′
j1 and x

′
j2 , we analyze these four scenarios sepa-

rately and show that none of them is possible for X′.
1a. If x

′
j1 � 1

2, x
′
kj1 � 0, then we have J

′ (X) � 1
2 bj1 +W1, where

W1 denotes the remaining part of the objective. With the
additional constraint x

′
k � 0, we can obtain a feasible solution

X̃′ with x
′
j1 � 1, x

′
kj1 � 0, so J

′ (X̃) � bj1 +W0, where W0 is the
remaining part of the objective of X̃′. Because X is an optimal
solution of the original problem, we have

1
2
bj1 +W1 > bj1 +W0.

By comparing X and X̃′, we can see that only xk and xkj1 are
changing (otherwise, it would contradict the optimality ofX).
Therefore, W0 is also the remaining part of the original ob-
jective, so J(X) � 1

2 bk + bj1 + 1
2 bkj1 +W0. Meanwhile, X̃ is also

feasible for the original problem without the additional
constraint, which is xk � 1

2, xj1 � 1
2, xkj1 � 1

2 (if bkj1 ≥ 0), and
xkj1 � 0 (if bkj1 < 0), so J(X̃) � 1

2 bk + 1
2 bj1 + 1

2max{bkj1 , 0} +W1.
Because X is an optimal solution of the original problem,
we have

1
2
bk + bj1 + 1

2
bkj1 +W0 ≥ 1

2
bk + 1

2
bj1 + 1

2
max bkj1 , 0

{ } +W1.

By summing up these two inequalities, we obtain

1
2
bk + 3

2
bj1 + 1

2
bkj1 +W0 +W1

>
1
2
bk + 3

2
bj1 + 1

2
max bkj1 , 0

{ } +W0 +W1,
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which is equivalent to bkj1 > max{bkj1 , 0}, so we reach a
contradiction.
1b. If x

′
j2 � 1

2 and x
′
kj2 � 0, then we have J′(X) � 1

2 bj2 +W1,
where W1 denotes the remaining part of the objective.
With the additional constraint x′k � 0, we can obtain a feasible
solution X̃′ with x

′
j2 � 0, x

′
kj2 � 0, so J′(X̃) � W0, where W0 is

the remaining part of the objective of X̃′. From the optimality
of X′, we can write

1
2
bj2 +W1 > W0.

As in 1a, we can see that W0 is also the remaining part of
the original objective, so J(X) � 1

2 bk +W0. Meanwhile, X̃ is
also feasible for the original problem without the additional
constraint, which is xk � 1

2, xj2 � 1
2, xkj2 � 1

2 (if bkj2 ≥ 0), and
xkj2 � 0 (if bkj2 < 0), so J(X̃) � 1

2 bk + 1
2 bj2 + 1

2max{bkj2 , 0} +W1.
Because X is an optimal solution of the original problem,
we obtain

1
2
bk +W0 ≥ 1

2
bk + 1

2
bj2 + 1

2
max bkj2 , 0

{ } +W1.

By summing up these two inequalities, we obtain

1
2
bk + 1

2
bj2 +W0 +W1 >

1
2
bk + 1

2
bj2 + 1

2
max bkj2 , 0

{ }

+W0 +W1,

which is equivalent to 0 > max{bkj2 , 0}, so we reach a
contradiction.

We next discuss the case of any other xi that is integral
in the original solution and not connected to xk but connected
to xj. If xj does not change in the new solution, then xi will
also remain the same. If xj � 1

2 in the original solution but
changes to one or zero in the new solution, the arguments
from the preceding analysis apply, and thus, xi will also
remain the same. □

Endnotes
1https://www.iriworldwide.com/IRI/media/IRI-Clients/price
_promo_special_report_2015_final_22-Oct-15_V2.pdf.
2https://retailleader.com/brick-and-mortar-makes-grade-back
-school-shopping.
3The words demand and sales are used interchangeably.
4 For example, in Cohen et al. (2017), the authors estimate suchmodels
for products in the coffee, chocolate, tea, and yogurt categories. They
obtain an out-of-sample R2 of between 0.759 and 0.964.
5Note that the magnitude of the cross-item effects is measured rel-
ative to the parameters of the demand functions such as seasonality
intercept, price sensitivity, and the factors capturing the postpromotion
dip effect. We provide more extensive tests in Section 5.5.
6The ordinary-least-squares (OLS) problem used to estimate the
model in (13) is efficient. However, the model in (12) cannot be ef-
ficiently estimated using OLS. A common method is to first estimate
the additive cross-item effects for each pair of items and then nor-
malize their effects in the sales data to finally estimate the log-log part
of the model using the normalized data.
7A similar behavior was observed for the linear demand model. This
observation is true for the vast majority of the tests presented in
this section.

8The building time of App(2) is dominated by calls to two key
Gurobi’s functions: add_var and add_constr. In its current form, the
code generates the coefficients and updates the model serially. This
procedure could potentially be improved by directly creating amodel
file and adding some parallelization. Optimizing our code to build
the models to reduce the run time and memory use is beyond the
scope of this paper.
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