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Abstract. In addition to setting price discounts, retailers need to decide how to schedule
promotion vehicles, such as flyers and TV commercials. Unlike the promotion pricing
problem that received great attention from both academics and practitioners, the promo-
tion vehicle scheduling problem was largely overlooked, and our goal is to study this
problem both theoretically and in practice. We model the problem of scheduling promo-
tion vehicles to maximize profits as a nonlinear bipartite matching-type problem, where
promotion vehicles should be assigned to time periods, subject to capacity constraints.
Our modeling approach is motivated and calibrated using actual data in collaboration
with Oracle Retail, leading us to introduce and study a class of models for which the boost
effects of promotion vehicles on demand are multiplicative. From a technical perspective,
we prove that the general setting considered is computationally intractable. Nevertheless,
we develop approximation algorithms and propose a compact integer programming for-
mulation. In particular, we show how to obtain a (1− ε)-approximation using an integer
program of polynomial size, and investigate the performance of a greedy procedure, both
analytically and computationally. We also discuss an extension that includes cross-term
effects to capture the cannibalization aspect of using several vehicles simultaneously. From
a practical perspective, we test our methods on actual data through a case study, and
quantify the impact of our models. Under our model assumptions and for a particular
item considered in our case study, we show that a rigorous optimization approach to the
promotion vehicle scheduling problem allows the retailer to increase its profit by 2% to 9%.
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1. Introduction
Retailers use sales promotions to attract newcustomers,
increase sales, and encourage existing customers to
switch brands, among other reasons. Focusing atten-
tion on the supermarket industry, sales promotions are
often used to generate higher profits, typically through
price reductions, placing products at the end of an aisle,
dedicating an in-aisle display to advertise some prod-
ucts, sending out flyers, and broadcasting commercials.
The first sales promotion in this list is a price discount,
which is a temporary reduction in the product’s price.
The additional examples listed above are called promo-
tion vehicles—i.e., various methods of communicating
to customers that certain products are worth purchas-
ing. Given that the inherent purpose of these vehicles is
to boost profits, one needs to sensibly determine which
vehicles to assign in which periods throughout the sell-
ing season.

Deciding the right time for sales promotions, which
price reductions to offer, andwhich promotion vehicles
to use is a fundamental problem of interest to super-
market managers. Illustrating the potential impact,
more than 50% of many brands’ sales occur during
sales promotions (see chap. 12 of Blattberg and Neslin
1990). However, the effective scheduling of sales pro-
motions is a complex and challenging problem, both
theoretically and in practice. Currently, many super-
market chains are still making decisions based on
intuition, past experience, and heuristic arguments.
Consequently, this provides great opportunities to
apply advanced data-driven optimization techniques
to improve the planning process and to gain manage-
rial insights. One of the key practical questions that
motivates this paper is: How much money does the
retailer leave on the table by using current promotion
vehicle assignment policies (based mainly on intuition
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and heuristics) relative to what can be attained by
developing data-driven optimization tools?
The analysis conducted in this paper provides con-

crete evidence that promotions can be a key driver for
increasing profits. In particular, scheduling sales pro-
motions effectively by using the right promotion vehi-
cles at the right times can lead to a significant profit
improvement. As explained later on, we validate the
impact of our model by using sales data from a large
supermarket retailer. Based on our modeling approach
and algorithmic methods, calibrated with real data, we
observe that optimizing vehicle assignments through-
out the selling season yields a profit improvement of
between 2% and 9% for the retailer. To better under-
stand the significance of this finding, it is worth men-
tioning that a report published by the Community
Development Financial Institutions (CDFI) Fund indi-
cates that the average profit margin for the supermar-
ket industry was only 1.9% in 2010 (see The Reinvest-
ment Fund 2011).

1.1. Informal Modeling Approach
We consider the problem faced by a supermarket man-
ager, who seeks to assign promotion vehicles over a
finite planning horizon so as to maximize profit. To the
best of our knowledge, modeling and formulating the
promotion vehicle scheduling problemwas not consid-
ered in the literature before. In this paper, motivated by
supermarket data, we propose an analytical model for
this problem as well as efficient approximation algo-
rithms that yield provably good scheduling policies.
Our model allows retailers to improve their decisions
on the scheduling of promotion vehicles by relying on
a support decision tool calibrated with historical data.
More precisely, we formulate the problem as a bipar-
tite matching-type problem, where promotion vehicles
should be assigned to time periods, subject to capac-
ity constraints. What makes our setting significantly
different from existing optimization problems in this
context relates to the form of the objective function.
Here, we are not maximizing a linear function, but
instead, the contribution of using several vehicles at
any given time period has a multiplicative effect, intro-
ducing a host of computational obstacles in optimizing
this function. In fact, as explained in Section 4, we try
to fit our data to both additive (linear) and multiplica-
tive (nonlinear) models, and consistently observe that
the multiplicative model provides a better fit to the
data. In this model, each time period is associated with
some nominal profit (i.e., without accounting for pro-
motion vehicles), which can be boosted based on the
subset of promotion vehicles assigned to that period.
The boosting factor may also account for cannibaliza-
tion effects, from using multiple promotion vehicles
simultaneously. In practice, retailers often refer to this
cannibalization effect as overlapping promotion vehi-
cles (e.g., the boost in demand from simultaneously

using two vehicles is lower than using these two vehi-
cles independently). Finally, our formulation admits
two types of business rules as constraints: (i) imposing
a limit on the number of times each promotion vehi-
cle can be assigned throughout the planning horizon;
and (ii) imposing a limit on the number of promotion
vehicles that can be assigned to each time period. In
Sections 3 and 4.3, we present a formal description of
this model, its main business rules, and the relevant
mathematical notation.

1.2. Contributions
From a theoretical perspective, the main contribution
of this paper lies in introducing and studying a new
matching-type optimization problem. To the best of
our knowledge, this problem has not been studied
before. As explained in greater detail below, we pro-
vide complexity results, devise efficient approximation
algorithms, and propose a compact integer program-
ming formulation. In addition, since this research was
conducted in collaboration with Oracle Retail, a partic-
ular emphasis has been put on the real-world applica-
bility of our methods. With this goal in mind, we pay
special attention to testing the validity of our models
and to measuring their impact using actual data. We
next briefly summarize our main contributions.

• Modeling the promotion vehicle scheduling problem.
Motivated by real-world retail environments, we intro-
duce a new class of models for scheduling promo-
tion vehicles, where the boost effects of vehicles on
demand are multiplicative. This class of models is easy
to estimate from data and yields a good forecast accu-
racy. Our modeling approach and its empirical moti-
vation are discussed in Sections 3 and 4, whereas the
resulting optimization problem is formally described
in Section 4.3.

• Complexity results. We show that, unlike standard
(linear) matching problems, the introduction of multi-
plicative boost terms into our formulation renders the
problem NP-hard. Moreover, we prove that our prob-
lem cannot be efficiently approximated within some
given constant by relating it to the task of detecting
large independent sets in regular graphs. This hard-
ness result is presented in Section 5.1.

• Approximation algorithms. We develop three dif-
ferent approaches for computing provably good solu-
tions. The first approach consists of an efficient greedy
algorithm, attaining an approximation ratio of ∆ + 1,
where ∆ stands for the maximum number of vehi-
cles that can be assigned to any time period (see Sec-
tion 5.2). Our second approach shows that by losing
an ε-factor in optimality, our problem can be for-
mulated as a polynomial-size integer program (see
Section 5.3). Finally, we also show that the special
case when the vehicle boosts are uniform admits a
polynomial-time approximation scheme (PTAS) (see
Online Appendix D).
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• Extension to cross terms. We study an extension
of our model by considering cross-term interactions
between pairs of vehicles. In particular, we prove
a stronger hardness result for this extension, and
show that our integer programming approach is flex-
ible enough to incorporate these terms into the for-
mulation, while still guaranteeing ε-optimality (see
Appendix B). We also test this model computation-
ally in Section 6.2, by comparing it to the model that
ignores cross terms. In practice, we observe that only
very heavy cannibalization effects have a significant
impact on the optimal solution, suggesting that retail-
ers may overlook complementary effects that are com-
mon in retail.

• Computational experiments and case study. Our in-
dustry partners provided us with sales data from
multiple stores, allowing us to test our model and
algorithms on real-world instances. We first run com-
putational experiments to test our algorithms in terms
of running times and performance accuracy. We show
that both the IP-based approach and the greedy algo-
rithm perform well, as they compute near-optimal
solutions within seconds (see Section 6). We then
present a case study by applying our method on actual
retail data. By comparing the predicted profit under
our proposed algorithms to current practice, we quan-
tify the added value of our model. Under our model
assumptions and for a particular item considered in
our case study, these tests suggest a profit increase of
between 2% and 9% relative to current practice (see
Section 7).

2. Literature Review
Our work is related to retail operations and promo-
tion optimization. In particular, when a retailer needs
to design and schedule promotions, it often consists of
choosing the right price discounts as well as the appro-
priate promotion vehicles for each time period of the
selling season. Typically, retailers make these two deci-
sions independently. Namely, they decide on the pro-
motion depth first, and only then choose which/when
promotion vehicles to use. Price promotion decisions
are discussed below, whereas a recent work on this
topic can be found in Cohen et al. (2017). In this paper,
we focus on tackling the latter task of scheduling pro-
motion vehicles.
Sales promotions have been studied extensively in

the literature, mostly in marketing and economics. We
refer the reader to Blattberg and Neslin (1990) and the
references therein for a comprehensive review. How-
ever, with regard to sales promotions, the marketing
community is mainly focused on modeling and esti-
mating dynamic sales models that can be used to
derive managerial insights (see, e.g., Cooper et al. 1999
and Foekens et al. 1998), typically in the form of econo-
metric or choice models. For example, Foekens et al.
(1998) study econometric models based on scanner

data to examine the dynamic effects of sales promo-
tions. In this paper, however, we formulate the underly-
ing problem using an optimization approach and com-
pute near-optimal solutions for scheduling promotion
vehicles. Note that the existing literature has consid-
ered additive and multiplicative demand in terms of
the noise dependence (see, e.g., Chen and Simchi-Levi
2004) or the price dependence (see, e.g., Cohen et al.
2017). To our knowledge, the structural dependence of
the demand on the promotion vehicles was not con-
sidered before in the operations management com-
munity (as mentioned, econometric models were pro-
posed, such as Foekens et al. 1998). Inspired by existing
demand models for price and noise dependence, we
consider the additive and multiplicative forms of pro-
motion vehicle dependence.

Optimizing of sales promotions is also closely re-
lated to the field of dynamic pricing. An extensive
survey on this topic is provided by Talluri and van
Ryzin (2004). Recent advances in scheduling price pro-
motions can be found in Cohen et al. (2017), where
the authors provide an optimization formulation with
a demand model estimated from data as input. They
propose an efficient algorithm based on discretely lin-
earizing the objective, and show that their approxima-
tion yields near-optimal solutions (in the vast majority
of practical instances), runs in milliseconds, and can
easily be implemented by retailers. It is important to
point out that Cohen et al. (2017) focus on the price
promotion problem and do not consider the question
of how to effectively schedule promotion vehicles. In
this paper, our efforts are concentrated on questions
surrounding the scheduling of promotion vehicles. To
the best of our knowledge, we are the first to propose
provably good promotion vehicle scheduling policies
using an optimization approach.

As previously mentioned, our work is also related
to retail operations, which has received a great deal
of attention from both academics and practitioners.
Nowadays, it has become very common for retailers
(e.g., fashion, supermarkets, electronics, etc.) to hire
business analysts or consultants to develop data-driven
decision-making tools. Such retailers need to make a
very large number of decisions at any point in time.
These decisions typically include inventory, capacity,
assortment, pricing, and promotions. Several works
consider the problem of inventory management in a
retail environment, andmany tools were developed for
demand forecasting and inventory planning (see, e.g.,
Cooper et al. 1999, Caro and Gallien 2010). The same
statement can be made for both assortment planning
(see the survey of Kök et al. 2008 and the references
therein) and pricing decisions (see, e.g., Phillips 2005,
Cohen et al. 2017). It is also worth noting that sev-
eral prescriptive works in the marketing community
study the impact of retail coupons (see, e.g., Heilman



Baardman et al.: Scheduling Promotion Vehicles to Boost Profits
Management Science, 2019, vol. 65, no. 1, pp. 50–70, ©2018 INFORMS 53

et al. 2002). However, to the best of our knowledge,
the problem of optimally scheduling promotion vehi-
cles in a retail environment has not been considered
before. This paper is the first to address this retail
operational problem by using a rigorous analytical
model and developing efficient data-driven optimiza-
tion approaches.
From a methodological perspective, the theoretical

contributions of our work are obtained by synthesiz-
ing techniques related to computational complexity,
approximation algorithms, and integer programming.
Even though the technical part of this paper is self-
contained, we assume that the reader is equipped with
basic working knowledge in the above-mentioned top-
ics. For this reason, to better understand some of our
results, nonspecialists could still consult a number of
excellent surveys and books related to the computa-
tion of independent sets in graphs (Pardalos and Xue
1994, Bomze et al. 1999, Gutin 2013), greedymethods in
exact and approximation algorithms (see, e.g., Cormen
et al. 2009, chap. 16; Kleinberg and Tardos 2005,
chap. 4; Williamson and Shmoys 2010, chaps. 2 and 9),
and integer programming (Schrĳver 1998, Wolsey and
Nemhauser 1999, Bertsimas and Weismantel 2005).

As previously mentioned, the concrete optimization
problem considered in this paper (see Section 4.3) can
be viewed as a bipartite matching-type problem in dis-
guise, where promotion vehicles should be assigned
to time periods. However, rather than maximizing a
linear function, the concurrent utilization of several
vehicles at any given time period has a multiplicative
effect, leading to a nonlinear formulation. From this
perspective, the problem of optimizing an arbitrary
nonlinear function over the bipartite matching poly-
tope is known to beNP-hard (see, e.g., Chandrasekaran
et al. 1982, Berstein and Onn 2008). To our knowl-
edge, Section 5.1 and Appendix B.2, where we con-
nect between the promotion vehicle scheduling prob-
lem and detecting large independent sets in certain
graph classes, provide new inapproximability bounds
for nonlinear bipartite matching. From an algorithmic
point of view, exact polynomial-time solution meth-
ods have been proposed over the years for comput-
ing bipartite matchings that optimize specific (nonlin-
ear) objective functions subject to various structural
assumptions. We refer the reader to selected papers
in this context (Papadimitriou and Yannakakis 1982,
Papadimitriou 1984, Mulmuley et al. 1987, Yi et al.
2002, Berstein and Onn 2008), and to the references
therein, for a detailed literature review, as well as to
additional related work on nonlinear integer program-
ming and matroid optimization (Hassin and Tamir
1989, Onn 2003, Hochbaum 2007, Berstein et al. 2008,
Lee et al. 2009, Hemmecke et al. 2010, Köppe 2012). We
are not aware of straightforward ways to make use of
these algorithms for the purpose of deriving our main
results.

3. General Modeling Approach
In this paper, we consider the problem formulation (P),
formally defined in Section 4.3, that was developed in
collaboration with Oracle Retail and calibrated with
actual retail data. This section is devoted to introducing
the context and general formulation of the promotion
vehicle scheduling problem.

We consider a single-item setting in which a retailer
needs to decide how to schedule promotion vehicles
for this particular item (see Section 8 for an extension
to the multi-item setting). The retail manager’s objec-
tive is to maximize the total profits during a finite time
horizon, where the underlying decision is which pro-
motion vehicles to use in each time period. Typically,
a retailer chooses among five to 40 distinct promo-
tion vehicles; examples include product placement at
the end of an aisle (endcap display), dedication of an
in-aisle display, flyer mailings, broadcast TV commer-
cials, radio advertisements, tasting stands, and in-store
flyers. In our model, the retailer does not decide on
prices—the reason being that the promotion price opti-
mization and promotion vehicle scheduling are gen-
erally solved by different departments of the retailer.
Hence, the focus of this paper is on the promotion vehi-
cle scheduling problem, which has not been studied
rigorously before. To arrive at a concrete model formu-
lation, we first introduce some useful notation:

• T—Number of time periods (e.g., weeks) in the
planning horizon.

• V—Set of different vehicles available to the
retailer.

• Lt—Limitation on the number of vehicles avail-
able at time t; i.e., an upper bound on the number of
vehicles that can be assigned to time t.

• Cv—Upper bound on the number of times the
retailer can use vehicle v throughout the planning
season.

• xvt—Binary decision variable that indicates
whether vehicle v is assigned to time t.

Note that we have a total of |V | · T binary variables
to be determined by the retailer. To maximize total
profits, we need to understand how promotion vehi-
cles affect demand. In practice, the demand of an item
depends on various observable features such as cur-
rent and past prices, prices of other products in the
same category, shelf space, seasonality, trend effects,
and promotion vehicles. In particular, using a promo-
tion vehicle may enhance cumulative sales by gener-
ating additional traffic, increasing the visibility of the
product, or making the customer aware of the prod-
uct. One key challenge is to propose a demand model
that captures this effect. For example, one can consider
a general time-dependent demand function dt(·, ·) that
explicitly depends on a vector of prices denoted by
pt (that could include current and past prices as well
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as prices of other products), and also on the promo-
tion vehicles being used—i.e., dt is a function of pt and
{xvt}v∈V . In Section 4, motivated by real data, we pro-
pose a class of models that aim to capture the effects of
promotion vehicles on demand.

We assume that this deterministic demand function
provides an accurate estimate of expected demand.
The good out-of-sample forecasting metrics obtained
in Section 4 serve as justification for this assumption.
In addition, we assume that the retailer has sufficient
inventory to meet demand, so that predictions of sales
and demand are equivalent. This assumption is rea-
sonable for grocery retailers, and in particular for non-
perishable packaged goods such as coffee and cereals.
Literature has shown that grocery retailers recognize
the negative effects of stocking out of promoted prod-
ucts (see e.g., Corsten and Gruen 2004, Campo et al.
2000) and use accurate demand forecasting models
(e.g., Cooper et al. 1999, Van Donselaar et al. 2006).

In practice, there are several business rules that con-
strain the promotion vehicle schedule. These rules are
usually dictated by the brand’smanufacturer or related
to certain financial/spatial constraints of the retailer.
Below, we discuss the different business rules that our
formulation incorporates.

1. Limited number of times a particular vehicle can be
used. For example, during the next quarter, a total of
four in-store flyers and two TV advertisements are
available. This rule may come from a contract between
the manufacturer and the retailer, where the manufac-
turer covers the cost of using a particular promotion
vehicle in exchange for an increased visibility. One can
encode this requirement as

T∑
t�1

xvt ≤ Cv ∀ v ∈V. (1)

2. Limited number of vehicles per time period. For
instance, during a given week, the retailer can use at
most four vehicles. During another week, in which a
holiday event occurs, at most seven vehicles can be
used. These rules are usually known up front for the
entire selling season. One can impose the following
constraint in the formulation:∑

v∈V
xvt ≤ Lt ∀ t ∈ [T], (2)

where [T] denotes 1, . . . ,T.
3. A particular promotion vehicle has to be used (or can-

not be used) at a specific time period. In many cases, the
retailer anticipates promotional events and knows in
advance that a particular vehicle has to be used dur-
ing a specific week (e.g., a tasting stand for a particular
brand is scheduled during a given week). This trans-
lates into xvt � 1. Alternatively, the retailer may not be
allowed to use a particular vehicle at a certain time
period—i.e., xvt � 0.

In this context, some retailers might want to impose
global constraints. For example, certain coupons might
need be mailed out for several stores simultaneously.
These global requirements can be incorporated into
our computational framework. In the case that several
stores are required to implement the same promotion
schedule, we can pool the separate store demand func-
tions into a single aggregate demand function, virtu-
ally treating the different stores as a single aggregate
store. With this new aggregate demand, we can solve
the promotion vehicle scheduling problem and imple-
ment the resulting promotion schedule in all stores.
That being said, the retailer considered in our case
study implements a decentralized promotion schedule,
where each store is responsible for running its own
promotion campaigns. This policy is frequently used
when the stores are located in different states, with dif-
ferent management teams. As a result, we do not incur
such global constraints in this paper.

In the problem formulation below, we capture the
above business rules as linear constraints. The retailer
maximizes the total profit during the planning horizon,
while satisfying the business rules:

max
T∑

t�1
(pt − ct) dt(pt , {xvt}v∈V)

s.t.
T∑

t�1
xvt ≤ Cv ∀ v ∈V,∑

v∈V
xvt ≤ Lt ∀ t ∈ [T],

xvt ∈ {0, 1} ∀ v ∈V, t ∈ [T].

Here, pt and ct are the price and cost of the item
at time t, respectively. Based on the assumption that
the prices have been determined in advance, when
solving the above optimization problem, the vector of
prices pt (that can include past and cross-item prices)
is assumed to be known. In Section 4.3, we explain how
to easily incorporate constraints of the form xvt � 1 or
xvt � 0 using basic preprocessing steps.

4. Empirical Motivation and the
Multiplicative Model

In what follows, our goal is to use real data to motivate
the promotion vehicle scheduling problem from a busi-
ness perspective. Concretely, we present an empirical
motivation for considering different demand models
dt(pt , {xvt}v∈V). In particular, we discuss how demand
depends on the use of promotion vehicles {xvt}v∈V .

4.1. Data Description
Our data set contains data collected from 18 stores of
a large supermarket client of the Oracle Retail Global
Business Unit. This data set spans a period of roughly
two years, from the beginning of 2009 to mid 2011,
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which we split into a training set consisting of the
first 80 weeks and a testing set consisting of the last
33 weeks. The product category we focus on is the cof-
fee category, in which 21 different promotion vehicles
were used. This category contains products differing
by brand, size, and coffee roast, just to name a few
examples. As we consider the single-item problem, we
select one particular item, representative of the entire
category. For confidentiality reasons, the precise name
of this item cannot be specified.
To estimate the boosts in demand due to promotion

vehicles, the dependent variable in each observation
is the weekly sales of our item in one of the super-
markets. It is worth noting that we assume forecasting
sales and demand to be equivalent; this assumption
was justified in Section 3, especially for a nonperish-
able item such as coffee. The independent variables
used to describe weekly coffee sales are the store at
which sales are made, the trend (increasing or decreas-
ing sales over time), the seasonality (time of the year),
the normalized price, the normalized prices of the past
four weeks, and the 21 different promotion vehicles.
Some of the most efficient promotion vehicles found in
our data set include the following: sending a coupon to
customers (Mailing Coupon); promoting the product in
a flyer, particularly in the first few pages (Flyer Front);
the middle pages (Flyer Mid), and the final pages (Flyer
End); promoting the product by placing an in-store dis-
play (Display); offering a bonus snack with soft drinks
(Bonus Snack); and featuring the product in a TV com-
mercial (TV Commercial).

4.2. Demand Model Estimation and Selection
As previously discussed, we assume that the demand
dt(pt , {xvt}v∈V) depends on the prices but also explic-
itly on the promotion vehicles. In what follows,
we consider two potential models for the function
dt(pt , {xvt}v∈V) and analyze their performance on real
data. In the first model, demand has an additive linear
dependence on prices and promotion vehicles:

ds , i
t �βA, s , i

0 +βA
1 t+βA, i

2 ps , i
t +

4∑
j�1
βA, i

2+ j p
s , i
t− j +

21∑
v�1
γA

vt x
s , i
vt +ε

s , i
t .

The second model assumes a multiplicative log-linear
dependence:

log(ds , i
t )� β

M, s , i
0 + βM

1 t + βM, i
2 log(ps , i

t )

+

4∑
j�1
βM, i

2+ j log(ps , i
t− j)+

21∑
v�1

γM
vt xs , i

vt + εs , i
t ,

where ds , i
t and ps , i

t represent the demand and price for
item i in store s at time t. The variable ps , i

t− j is the price
of item i in store s at time t− j, xs , i

vt indicates whether
vehicle v is used for item i in store s at time t, and εs , i

t is
an i.i.d. normally distributed noise for all observations.

The parameters capture the following effects. First, βs , i
0

captures the baseline sales of item i in store s at any
time, while β1 incorporates the trend in demand. Sec-
ond, βi

2 captures the price elasticity of item i, whereas
βi

3 , . . . , β
i
6 incorporate item i’s effect of past prices on cur-

rent demand. Including these variables in the demand
model allows us to capture the well-known stockpil-
ing effect in groceries (see chap. 12 of Blattberg and
Neslin 1990). This effect occurs often when consumers
purchase larger quantities during price promotions. As
a result, consumers stockpile the item for future con-
sumption, especially for nonperishable items. From a
modeling perspective, past promotions decrease cur-
rent demand, which can be captured by using past
prices as independent variables in our demand model.
Finally, γ1t through γ21t are the parameters of interest,
as they capture the boost in demand generated by each
of the 21 vehicles at each time period.

The models described above are both commonly
used in practice (for example, by Oracle Retail) and
in the academic literature (see, e.g., Van Heerde et al.
2000, Macé and Neslin 2004). Nevertheless, most of the
models studied so far do not explicitly include promo-
tion vehicle effects. Few works, such as that of Wittink
et al. (1988), propose demand models that incorpo-
rate a limited number of promotion vehicles. In this
paper, we generalize existing demandmodels to explic-
itly incorporate the effects of promotion vehicles on
demand.

To select the demand model that provides the best
description of how demand depends on promotion
vehicles, we use ordinary least squares regression and
apply stepwise selection based on the Akaike infor-
mation criterion (AIC) and the Bayesian information
criterion (BIC)1 to obtain the additive demand model:

ds , i
t � βA, s , i

0 + βA
1 t + βA, i

2 ps , i
t + βA, i

3 ps , i
t−1 +

19∑
v�1
γA

v xs , i
vt + ε

s , i
t ,

(3)
and the multiplicative demand model:

log(ds , i
t )� β

M, s , i
0 + βM

1 t + βM, i
2 log(ps , i

t )

+ βM, i
3 log(ps , i

t−1)+
21∑

v�1
γM

v xs , i
vt + εs , i

t . (4)

Because of the sparsity of our data set, we are unable
to estimate cross-term effects, and require the boost of
each vehicle v to be time independent—i.e., γvt � γv for
all t. According to Oracle researchers and the client’s
managers, both assumptions are justified for the coffee
category. Nonetheless, the analytical results derived in
this paper hold for the more general setting, where γvt
can be time dependent.

After estimating these two regression models, we
are interested in deciding which of the two provides a
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Table 1. Out-of-Sample Forecasting Metrics of the Additive
and Multiplicative Models for Different Items

Models Item R2 MAPE MAE

Additive regression 1 −0.0815 1.3187 29.4980
Multiplicative regression 1 0.7798 0.6725 14.5809
Additive regression 2 0.6431 1.9788 8.6900
Multiplicative regression 2 0.9453 0.5164 2.8520
Additive regression 3 0.6260 0.8703 19.0530
Multiplicative regression 3 0.6823 0.4327 17.0312

better fit to the data. To compare the additive and mul-
tiplicative demand models, we compute out-of-sample
forecasting metrics for both models. Table 1 presents
the out-of-sample R2, mean absolute percentage error
(MAPE), and mean absolute error (MAE) of the two
stepwise selected demand models when applied to
three representative items in the coffee category. These
three items were selected such that a significant use
of promotion vehicles was observed in the data. To
ensure some diversity, we decided to select one item
from the major house brand (private label) and two
items from major national brands (one low-selling and
one high-selling).
Table 1 demonstrates that the multiplicative mo-

del (4) outperforms the additive model (3) in all fore-
casting metrics. In fact, the differences in these met-
rics are substantial, which leads us to conclude that
the multiplicative model has a significantly better pre-
dictive power. One possible reason could be that the
additive model suffers from a scale independence, as
it assumes an absolute boost independent of the num-
ber of sales. For example, sales can differ consider-
ably between stores, making it difficult to estimate a
uniform additive parameter for each promotion vehi-
cle. Thus, a relative term, such as in the multiplica-
tive model, seems to be more suitable. Overall, the
forecasting accuracy of the multiplicative model (4) is
good when compared to standard forecasting models
in retail operations, especially when predicting sales
for individual items in specific stores.

Based on the preceding discussion, in the remainder
of this paper, we consider a broader class of models
that subsume the multiplicative log-linear model (4)
as a special case. The specifics of this class, which is
referred to as the multiplicative model, are presented
in Section 4.3. The alternative way of modeling the
promotion vehicle scheduling problem, by considering
an additive model, is reported in Online Appendix C.
Even though the computational problem resulting
from the latter class can be optimized efficiently, our
analysis shows a worse fit to actual retail data.

4.3. The Multiplicative Model
We consider a general class of demand models where
the effect of promotion vehicles is multiplicative. From

a practical perspective, these models are easy to esti-
mate from data, and provide a meaningful interpre-
tation to each estimated parameter. The multiplica-
tive demand model assumes that the price and vehicle
effects are multiplicative:

dt(pt , {xvt}v∈V)� hM
t (pt) ·

∏
v∈V

Bxvt
vt . (5)

The function hM
t (pt) represents the effect of the price

vector pt on demand, which can include current and
past prices as well as cross prices from other products.
Each boost parameter Bvt ≥ 1 corresponds to the rel-
ative increase in demand when vehicle v is used at
time t. For example, if Bvt � 1.03, then assigning vehi-
cle v at time t yields a 3% increase in demand, rela-
tive to the case where this vehicle is not used. Note
that, when vehicle v is not used at time t, we have
xvt � 0, meaning that the nominal demand is unaf-
fected. We consider an extension of demand model
(5) that includes cross-term effects (i.e., interactions
between pairs of vehicles) in Appendix B.

Altogether, the promotion vehicle scheduling prob-
lem can be stated as follows:

(P) max
T∑

t�1
αt

∏
v∈V

Bxvt
vt

(C1)
T∑

t�1
xvt ≤ Cv ∀ v ∈V,

(C2)
∑
v∈V

xvt ≤ Lt ∀ t ∈ [T],

(C3) xvt ∈ {0, 1} ∀ v ∈V, t ∈ [T].
Here, the decision variables are xvt , indicating whether
vehicle v is scheduled at time t. Typically, in retail
applications, the number of vehicles |V | ranges be-
tween five and 40. Without loss of generality, we
assume that Bvt ≥ 1 for every v ∈V and t ∈ [T]. Further-
more, we assume that maxv Bvt > 1 for every t ∈ [T], as
otherwise, there is no reason to assign any vehicle to
this time period. The latter assumption will be partic-
ularly useful for simplifying the analysis of our integer
programming formulation in Section 5.3. For conve-
nience, we use αt to represent the effect of price on
profits at time t. More precisely, αt is equal to the profit
margin multiplied by the part of the demand affected
by prices—i.e., αt � (pt − ct) · hM

t (pt). Since all prices are
assumed to be given a priori, αt is a given quantity
as well.

Without loss of generality, we consider only business
rules (1) and (2). It is not difficult to verify that one can
perform simple preprocessingmodifications to capture
constraints of the form xvt � 1 or xvt � 0, mentioned
in Section 3. Indeed, xvt � 0 can be taken care of by
setting Bvt � 1. In addition, xvt � 1 can be handled by
modifying αt to αt Bvt , setting Bvt � 1, and decreasing
the values of Cv and Lt by one unit.
It is worth mentioning that a straightforward ap-

proach to obtaining a linear formulation is to make use
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of subset-type variables, yU, t , indicating whether the
set of vehicles U ⊆V is assigned to time period t. How-
ever, even though one can easily express the objective
function and constraints in terms of the yU, t variables,
unfortunately, there are O(2|V | · T) such variables—
i.e., exponentially many in the number of vehicles.
From a practical perspective, utilizing this formulation
becomes impractical as the number of promotion vehi-
cles increases beyond 18–20. In such cases, commercial
solvers take several hours or even days to compute an
optimal solution for a single instance of the problem.
In practical retail settings, this scenario is encountered
frequently as shown by the 21 promotion vehicles from
the real-world data described in this paper.

5. Hardness and Approximability
5.1. Hardness of Approximation
In what follows, we prove that it is NP-hard to approx-
imate the promotion vehicle scheduling problem (P)
in polynomial time within some constant factor. To
this end, we relate the approximability of this model
to that of computing maximum independent sets in
∆-regular graphs (henceforth, Max-IS∆). We begin by
recalling how the latter problem is defined, and state
some known hardness results in this context.
An instance of Max-IS∆ is specified by an undi-

rected ∆-regular graph G � (N,E), meaning that the
degree of each vertex is precisely ∆. A subset of ver-
tices U ⊆ N is said to be independent if for every
pair of vertices in U, there is no edge connecting
the two. The objective is to compute an independent
set of maximal cardinality. The most useful hardness
result for our purposes states that even Max-IS3 is
APX-hard (Halldórsson and Yoshihara 1995, Berman
and Fujito 1999, Alimonti and Kann 2000), mean-
ing that it cannot be approximated better than some
given constant, unless P � NP. In fact, the problem of
computing maximum independent sets in ∆-regular
graphs has not been shown at present time to admit
a better approximation than in ∆-bounded-degree
graphs (where the degree of each vertex is at
most ∆), a more general case known to be inap-
proximable within factor O(∆1−ε), for any fixed ε > 0
(Håstad 1996).
Theorem 1. There exists some constant β < 1, such that
the promotion vehicle scheduling problem cannot be approx-
imated within factor greater than β, unless P�NP.
Proof. To establish the claim, we describe an approxi-
mation-preserving reduction from Max-IS∆ to the pro-
motion vehicle scheduling problem. For this purpose,
given an instance G� (N,E) ofMax-IS∆, we create a cor-
responding instance of the promotion vehicle schedul-
ing problem as follows:

• The set of vehicles is E, while the set of time peri-
ods is N . That is, the edges and vertices of G serve as
vehicles and time periods, respectively.

• Each vehicle e ∈ E has a unit capacity—i.e., Ce � 1.
Each time period v ∈ N has a capacity of Lv �∆.

• Now, let Sv ⊆ E be the star centered at the vertex v,
that is, the collection of edges adjacent to v, noting that
|Sv | �∆, as G is a ∆-regular graph. Then, for each time
period v, we set αv � 1, while its related boosts are
given by

Bev �

{
|N |2 if e ∈ Sv ,

1 if e < Sv .

In other words, we have just created the following
instance:

(P) max
∑
v∈N
|N |2

∑
e∈Sv xev

(C1)
∑
v∈N

xev ≤ 1 ∀ e ∈ E,

(C2)
∑
e∈E

xev ≤ ∆ ∀ v ∈ N,

(C3) xev ∈ {0, 1} ∀ v ∈ N, e ∈ E.

Claim 1. Let U∗ be a maximum-cardinality independent set
in G. Then, OPT(P) ≥ |N |2∆ · |U∗ |.
Proof. We construct a feasible solution x, by setting
xev � 1 whenever e appears in the star Sv and, at the
same time, v is picked by the independent set U∗
(namely, e ∈ Sv and v ∈ U∗); otherwise, xev � 0. To see
why x is indeed feasible for (P), note that since U∗ is an
independent set, any edge e has at most one endpoint
in U∗, meaning that this edge is assigned at most once.
Moreover, since the set of edges assigned to each ver-
tex v ∈ U∗ is exactly Sv , and recalling that |Sv | � ∆, the
objective value of x is∑

v∈N
|N |2

∑
e∈Sv xev ≥

∑
v∈U∗
|N |2

∑
e∈Sv xev

�
∑
v∈U∗
|N |2|Sv | � |N |2∆ · |U∗ |. �

Claim 2. Let x be a feasible solution to (P), with objective
value V (x). Given this solution, we can efficiently compute
an independent set in G of size at leastV (x)/|N |2∆−1/|N |.
Proof. The important observation to make notice of is
that, for every vertex v ∈ N , since |Sv | � ∆, we have
|N |2

∑
e∈Sv xev ≤ |N |2∆. Moreover, this holds as an equality

if and only if xev � 1 for every e ∈ Sv . Therefore, when
the latter condition is not satisfied, we actually have
|N |2

∑
e∈Sv xev ≤ |N |2(∆−1). Consequently, letting Ux denote

the set of vertices for which equality holds,

|Ux | · |N |2∆ ≥
∑
v∈N
|N |2

∑
e∈Sv xev − |N\Ux | · |N |2(∆−1)

≥ V (x) − |N |2∆−1 ,

meaning that |Ux | ≥ V (x)/|N |2∆ − 1/|N |. Also, Ux is
necessarily an independent set in G. Otherwise, there is
an edge e � (u , v) between two vertices in Ux , implying
that the solution x cannot assign ∆ � |Sv | � |Su | edges
to both, since e ∈ Sv ∩Su can be assigned to at most one
vertex. This contradicts the definition of Ux . �



Baardman et al.: Scheduling Promotion Vehicles to Boost Profits
58 Management Science, 2019, vol. 65, no. 1, pp. 50–70, ©2018 INFORMS

With the above claims in place, the existence of
a polynomial-time β-approximation for the vehicle
scheduling problem implies that Max-IS∆ can be effi-
ciently approximated within factor β − 1/|N |, as one is
able to compute an independent set of cardinality at
least (β · |N |2∆ · |U∗ |)/|N |2∆ − 1/|N | ≥ (β − 1/|N |) · |U∗ |.
Since Max-IS∆ is known to be APX-hard (Halldórsson
and Yoshihara 1995, Berman and Fujito 1999, Alimonti
and Kann 2000), this concludes our proof. �

5.2. The Greedy Algorithm
In this section, we propose an efficient greedy method
for approximating the promotion vehicle scheduling
problem. Our algorithm is guaranteed to compute an
assignment whose objective value is within factor ∆+1
of optimal. Here, ∆ stands for the maximal number
of vehicles that can be assigned to any time period—
i.e., ∆�maxt Lt . It is worth pointing out that obtaining
a performance guarantee that is sublinear in ∆ (e.g.,
log∆ or even

√
∆) would immediately translate into

a sublinear approximation for computing maximum
independent sets in∆-regular graphs, via the reduction
given in Section 5.1. A result of this nature is not known
at the present time.

The algorithm. To simplify the presentation, we begin
by introducing some helpful notation. Let Cs be a |V |-
dimensional vector, indicating the remaining capacity
of each vehicle when step s of the algorithm begins.
That is, for any vehicle v, the value of Cs , v is equal to the
initial capacity Cv of this vehicle minus the number of
times it has already been assigned in steps 1, . . . , s − 1.
Also, let As stand for the set of active time periods at
the beginning of step s, which are time periods that
have not been assigned any vehicle in steps 1, . . . , s − 1.
Our algorithm proceeds as follows:
1. We initialize C1, v � Cv for any vehicle v, with all

time periods active—i.e., A1 � {1, . . . ,T}.

Figure 1. (Color online) Example Steps of the Greedy Algorithm

(a) Step 1 (b) Step 2
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2 2 1 0Lt
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3

2

0

1.2 1.6 1.61.2�t
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2. For s � 1, . . . ,T:
(a) For every currently active time period t ∈ As ,

we compute the subset of vehicles U t
s that maximizes

the boost ∏
v∈U t

s
Bvt , allowing to pick up to Lt vehicles

v out of those with positive remaining capacity Cs , v .
This subset is obtained by picking vehicles in nonin-
creasing order of Bvt-value (breaking ties arbitrarily),
until either Lt vehicles are picked or all vehicles with
positive remaining capacities have been picked.

(b) Let t∗ be the time period t ∈ As for which αt ·∏
v∈U t

s
Bvt is maximized.

(c) We assign the vehicles in U t∗
s to time period t∗,

make this period inactive (i.e., update As+1←As\{t∗}),
and decrement the remaining capacity of each vehicle
v ∈U t∗

s (i.e., set Cs+1, v← Cs , v − 1).
Example. Prior to analyzing the algorithm, we present
a small illustrative example in Figure 1. This setting
consists of three vehicles and four time periods with
boost parameters Bvt , limitations Cv and Lt , and under-
lying profits αt , as given in each table. Figure 1(a)
presents the first step of the greedy algorithm. In par-
ticular, for each time period, we compute a feasible set
of vehicles that yields the largest boost. In this exam-
ple, we obtain {v1 , v2} for t1, {v1 , v3} for t2, {v3} for t3,
and {v3} for t4. Next, the profit gains are calculated
for each time period and shown in the bottom of Fig-
ure 1(a) (e.g., for time t1, the gain is αt1

Bv1 t1
Bv2 t1

�

1.872). The profit gain of time period t4 happens to be
the largest and, therefore, vehicle v3 is assigned to t4.
In Figure 1(b), the limitation parameters Cv and Lt are
updated to account for the assignment of v3 to t4 (i.e.,
Cv3

is decreased by one unit and period t4 is made
inactive, with Lt4

� 0). The next step of the greedy algo-
rithm repeats the same procedure by computing the
sets yielding the largest boosts, to obtain {v1 , v2} for
t1, {v1 , v2} for t2, and {v1} for t3 (note that vehicle
v3 is depleted). The profit gains are recalculated, and
vehicles v1 and v2 are assigned to t2. The algorithm
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continues this procedure until either all time periods
become inactive or all vehicles are depleted.
Analysis. The next theorem establishes the perfor-
mance guarantee of the greedy algorithm.

Theorem 2. The greedy algorithm approximates the promo-
tions vehicle scheduling problem within factor ∆+ 1.

Proof. Consider some fixed optimal solution, and let
R∗1 , . . . ,R

∗
T be the subsets of vehicles assigned to peri-

ods 1, . . . ,T, respectively. We will establish the per-
formance guarantee stated in Theorem 2 by consid-
ering an auxiliary procedure that runs in parallel to
the greedy algorithm, only for purposes of analysis.
Here, we start with A∗1 � {1, . . . ,T}. In each step s,
whenever the greedy algorithm assigns U t∗

s to time
period t∗, we define A∗s+1 by deleting several time peri-
ods from A∗s :
1. If t∗ ∈ A∗s , then the time period t∗ is removed.
2. For each vehicle v ∈U t∗

s \R∗t∗ , if one or more of the
sets in {R∗t : t ∈A∗s} contains v, we pick one of these sets
arbitrarily and remove it.
Based on this procedure, we have the following

properties at any step s:
• A∗s ⊆ As . In other words, the set of active time

periods in the greedy algorithm contains all time peri-
ods that have not been deleted yet from the optimal
solution (by the auxiliary procedure). This property is
an immediate consequence of the auxiliary deletion in
item 1 above.

• Cs , v ≥ C∗s , v for any vehicle v ∈ V , where C∗s , v �

|{t ∈ A∗s : v ∈ R∗t}|. That is, for any vehicle, its remain-
ing capacity at any step of the greedy algorithm is at
least as large as the number of times it appears in opti-
mal subsets corresponding to time periods in A∗s . This
property is shown in Lemma 1.

Lemma 1. At any step s, we have Cs , v ≥C∗s , v for any vehicle
v ∈V .

Proof. We prove this claim by induction on the step
number s. For s � 1, the claim obviously holds since
C1, v �Cv , by definition, whereas C∗1, v ≤ Cv . For s ≥ 2, we
begin by observing that both Cs , v and C∗s , v are nonin-
creasing in s for any vehicle v ∈ V , by definition of the
greedy algorithm and our auxiliary procedure. Then,
during step s, exactly one of the following cases occurs
for any v ∈V .
Case 1: v <U t∗

s . In this case, Cs+1, v � Cs , v , and by the
induction hypothesis,

Cs+1, v � Cs , v ≥ C∗s , v ≥ C∗s+1, v .

Case 2: v ∈ U t∗
s and v ∈ R∗t for some t ∈ A∗s . Here,

Cs+1, v � Cs , v −1, while the auxiliary procedure guaran-
tees that C∗s+1, v ≤ C∗s , v − 1. Therefore, by the induction
hypothesis,

Cs+1, v � Cs , v − 1 ≥ C∗s , v − 1 ≥ C∗s+1, v .

Case 3: v ∈ U t∗
s and v < R∗t for all t ∈ A∗s . In this case,

C∗s , v � 0 by definition, and

Cs+1, v ≥ 0� C∗s , v ≥ C∗s+1, v . �

Based on these properties, we know that at any
step s, the profit obtained by the greedy algorithm, αt∗ ·∏

v∈U t∗
s

Bvt∗ , is at least as large as the profit αt ·
∏

v∈R∗t
Bvt ,

for any time period t ∈ A∗s . This follows by observing
that every time period in A∗s is still active in the greedy
algorithm (as A∗s ⊆ As), which also has the remaining
vehicles to consider the subset R∗t as the one to pick
in the current step (since Cs , v ≥ C∗s , v). In particular,
αt∗ ·

∏
v∈U t∗

s
Bvt∗ is at least as large as the profit for each

time period deleted in step s from A∗s , noting that since
|U t∗

s | ≤ Lt∗ ≤ ∆, at most ∆+ 1 such periods were deleted
(more specifically, at most one period in item 1 of the
auxiliary procedure, and at most |U t∗

s \R∗t∗ | ≤ |U t∗
s | ≤ ∆

in item 2). Therefore, summing the profits obtained by
the greedy algorithm over all steps, we obtain a com-
bined profit of at least 1/(∆+1) times the total profit of
the optimal solution. �

Tight example. Even though the greedy algorithm
approximates the promotion vehicle scheduling prob-
lem within factor ∆ + 1, it is still unclear whether our
analysis is tight with respect to the parameter ∆. In
Appendix A.1, we show that this is indeed the case
(up to an additive factor of 1) by presenting a carefully
constructed example, proving the next claim.

Lemma 2. There is a sequence of instances for which the
ratio between the profit of an optimal solution and that of the
greedy algorithm approaches ∆.

Remark. Our algorithm can be viewed as a variant of
the greedy approach for approximating an extension
of the k-set packing problem (Arkin and Hassin 1998,
Chandra and Halldorsson 2001, Berman 2000, Hazan
et al. 2006) with exponentially many subsets. In this
context, each possible combination of a time period t
and at most Lt vehicles defines a subset, whose weight
is given by the profit obtained using the corresponding
assignment. Under capacity constraints for each vehi-
cle, the objective can alternatively be thought of as pick-
ing a maximum weight collection of subsets that satis-
fies these capacities. Due to having O(|V |O(∆)) subsets,
this collection needs to be handled in an implicit way,
along the same lines as how our algorithm operates.

Remark. It is worth mentioning that, in Online Ap-
pendix D, we develop a PTAS for the special case of
uniform vehicle boosts (i.e., Bvt � B for any vehicle v
and time period t), and uniform base profits of time
periods (i.e., α1 � · · · � αT).
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5.3. Approximate Integer Program
As the tight example in Lemma 2 demonstrates, one
can carefully design problem instances for which
the greedy algorithm constructs suboptimal vehicle
assignments. While these instances are very different
from those considered in practice, we are still moti-
vated to devise a provably good method that com-
putes near-optimal solutions, possibly at the expense
of being less efficient in terms of running time. For this
purpose, we prove that, in spite of having a nonlinear
objective function, the promotion vehicle scheduling
problem can be approximated within any degree of
accuracy as an integer (linear) program with polyno-
mially many variables and constraints. Specifically, the
remainder of this section is devoted to establishing the
next theorem.

Theorem 3. Given an accuracy parameter ε > 0, we can
efficiently construct an integer program (IPε) that satisfies
the following properties:
1. The combined number of variables and constraints in

(IPε) is polynomial in the input size of (P) and in 1/ε.
2. (IPε) provides a (1− ε)-approximation to (P). That is,

OPT(IPε) ≥ (1− ε) ·OPT(P), and moreover, any solution to
(IPε) can be efficiently translated to (P) without any loss in
optimality.

Ingredient 1: The integer program. Let D ⊆ �+ be a
finite discretization set, as defined in ingredient 2
below, consisting of nonnegative real numbers, with
0 ∈ D. With respect to this set, our integer program
(IPε) is defined as follows:

(IPε) max
T∑

t�1
αt

∑
r∈D
(e r · ytr)

(C1)
T∑

t�1
xvt ≤ Cv ∀ v ∈V,

(C2)
∑
v∈V

xvt ≤ Lt ∀ t ∈ [T],

(C3)
∑
r∈D

ytr � 1 ∀ t ∈ [T],

(C4) ytr ≤
1
r

∑
v∈V

ln(Bvt) · xvt ∀ t ∈ [T], r ∈D\{0},

(C5) xvt , ytr ∈ {0, 1} ∀ v ∈V, t ∈ [T], r ∈D.

Here, the assignment variables xvt play precisely the
same role as they did in the original formulation (P),
meaning that xvt indicates whether vehicle v is sched-
uled at time t. We also make use of additional indi-
cator variables ytr , defined for each time period t and
value r ∈ D. Intuitively, ytr indicates whether we are
using e r to slightly underestimate the boost ∏

v∈V Bxvt
vt

at time t, leading to the linear term e r · ytr in the objec-
tive function. Constraints (C1) and (C2) are the original
upper bounds on the number of times each vehicle

is assigned throughout the planning horizon, and on
the number of different vehicles assigned to each time
period. Constraint (C3) states that only one estimate
is picked for each time period. Finally, constraint (C4)
ensures that, when we pick an underestimate of e r for
the boost ∏v∈V Bxvt

vt in time period t (by setting ytr � 1),
the assignment variables xvt indeed generate a suffi-
ciently large boost; it is easy to verify that the linear
inequality ytr ≤ (1/r)

∑
v∈V ln(Bvt) · xvt guarantees this

condition.
Ingredient 2: Defining the set D. For the construction
to follow, it is convenient to make use of two input
parameters. First, B+

min stands for theminimumvalue of
any Bvt , taking into account only vehicle–period pairs
with Bvt > 1—namely, B+

min �min[{Bvt : v ∈V, t ∈ [T]} ∩
(1,∞)]. By our initial assumption (see Section 4.3), the
latter set is indeed nonempty. Second, Bmax > 1 is the
maximum value of any Bvt . With these parameters,
we begin by initializing D � {0}. This set is then aug-
mented by all breakpoints that are created when the
interval [ln(B+

min),∆ · ln(Bmax)] ⊆ (0,∞) is geometrically
partitioned by powers of 1 + 1/M, where M � (∆/ε) ·
ln(Bmax). In other words,

D�

{
0,ln(B+

min),
(
1+ 1

M

)
ln(B+

min),
(
1+ 1

M

)2

ln(B+

min), . . .
}
.

Proof of Theorem 3, item 1. This part of the theorem
is rather straightforward. To show that the size of (IPε)
is polynomial in the input size of (P) and in 1/ε, it suf-
fices to show that the discretization set D satisfies this
property. For this purpose, by definition of D, we have

|D| � O
(
log1+1/M

∆ · ln(Bmax)
ln(B+

min)

)
� O

(
M ·

(
log∆+ log

log(Bmax)
log(B+

min)

))
� O

(
∆

ε
· ln(Bmax) ·

(
log∆+ log

log(Bmax)
log(B+

min)

))
. �

Proof of Theorem 3, item 2. To prove that OPT(IPε)
≥ (1 − ε) · OPT(P), letting x∗ be a fixed optimal solu-
tion to (P), we argue that there exists a vector y � y(x∗)
such that (x∗ , y) is a feasible solution to (IPε) with an
objective value of at least (1− ε) ·OPT(P).
To this end, for every time period t, let

ytr �


1 if r �

⌊∑
v∈V

ln(Bvt) · x∗vt

⌋
D

,

0 otherwise,

where b·cD is the operator of rounding down to the
nearest number in D. It is easy to verify that (x∗ , y) is a
feasible solution to (IPε): The constraints (C1) and (C2)
are clearly satisfied, as they also appear in (P); con-
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straint (C4) is guaranteed to be satisfied by the way
we defined y; and constraint (C3) is taken care of by
the fact that 0 ∈D. Furthermore, the objective value of
(x∗ , y)with respect to (IPε) is precisely

T∑
t�1
αt

∑
r∈D
(e r · ytr)�

T∑
t�1
αt · exp

{⌊∑
v∈V

ln(Bvt) · x∗vt

⌋
D

}
.

To attain a lower bound on the latter expression, we
prove in Appendix A.2 the following lemma.

Lemma 3. For every time period t,

exp
{⌊∑

v∈V
ln(Bvt) · x∗vt

⌋
D

}
≥ (1− ε) ·

∏
v∈V

Bx∗vt
vt .

As a result, we have just shown that

OPT(IPε) ≥
T∑

t�1
αt · exp

{⌊∑
v∈V

ln(Bvt) · x∗vt

⌋
D

}
≥ (1− ε) ·

T∑
t�1
αt

∏
v∈V

Bx∗vt
vt � (1− ε) ·OPT(P).

To conclude the proof of item 2, it remains to show
that any feasible solution (x , y) to (IPε) can be effi-
ciently translated to (P) without any loss in optimality.
Clearly, x must be a feasible solution to (P), as the feasi-
bility set of this problem is contained in that of (IPε). In
addition, the objective value of x with respect to (P) is

T∑
t�1
αt

∏
v∈V

Bxvt
vt �

T∑
t�1
αt · exp

{∑
v∈V

ln(Bvt) · xvt

}
≥

T∑
t�1
αt

∑
r∈D
(e r · ytr),

where the latter inequality follows from constraints
(C3) and (C4). �
It is worth pointing out that we consider in Ap-

pendix B an extension of the demand model (5) that
includes cross terms—i.e., interactions between pairs
of vehicles. We first show that this extension becomes
provably harder to approximate. Then, we extend both
analytical results on the greedy algorithm and on the
approximate IP.

6. Computational Experiments
In this section, we conduct extensive computational
experiments to evaluate the algorithms developed in
Section 5 andAppendix B on randomly generated data.
Specifically, we examine the performance and running
time of the greedy algorithm and the approximate IP,
both with and without cross terms.

First, we elaborate on the experiments that evalu-
ate the greedy algorithm (Section 5.2) and the approx-
imate integer program (Section 5.3) when there are
no cross terms. Our algorithms are compared to the

optimal solution, which is computed using exhaus-
tive enumeration over all feasible solutions. This enu-
meration method becomes impractical for medium- to
large-scale instances from practice, as the running time
scales exponentially with the number of promotion
vehicles. For this reason, we consider a setting with
T � 13 time periods and |V | � 5 vehicles in our com-
putational experiments. Typically, supermarkets make
decisions for a selling season of one quarter composed
of 13 weeks. As a consequence, to allow brute force
enumeration, we have to limit the number of vehicles
to five, even though this number can easily exceed 20
in practice (see additional details in Section 7).

Subsequently, we analyze the performance of the
greedy algorithm and the approximate integer pro-
gram in the presence of cross terms. In this case, we
compare the two algorithms without cross terms to the
integer program with cross terms (see Appendix B.4).
From this comparison, we draw valuable insights into
the extent of potentially lost profit when cross terms
are present but ignored in the model.

The experiments described in this section were run
on a standard desktop computer with an Intel Core i5-
4690K@3.5 GHz CPU and 8 GB of RAM. The greedy
algorithm and the exhaustive enumeration method
were coded using Julia, whereas the approximate
IP with and without cross terms was solved with
Gurobi 6.0.2.

6.1. Performance Without Cross Terms
We first test our algorithms on a base setting, and later
extend this analysis to additional settings. Here, we
assume that Lt � 2 for every time period t and Cv � 2
for every vehicle v, while the parameters αt and Bvt
are drawn from a uniform distribution on the interval
[1, 2]. For the precision parameter ε of the approximate
IP, we experiment with the values 0.5, 0.25, 0.1, and
0.05. Table 2 presents both the running times (average
and maximum) and performance ratios (average and
minimum) over 200 random instances for ε � 0.5 and
ε � 0.25, and over 10 instances for ε � 0.10 and ε � 0.05.
Here, the performance ratio is defined as the objective
value of ourmethod (greedy algorithm or approximate
IP) divided by the optimal objective value, which is
computed through enumeration.

First, we note that the greedy algorithm and approx-
imate IP performwell and outperform their theoretical
guarantees over all instances. Additionally, we observe
that the greedy algorithm runs extremely fast, in under
a tenth of a second on all tested instances. Its run-
ning time is also significantly faster than that of the
approximate IP, which slows down considerably as
ε decreases (i.e., the 1 − ε guarantee improves) and
becomes impractical for ε < 0.25. The reason is that
even though the size of the approximate IP grows poly-
nomially in the input size and 1/ε, it remains an integer
program.
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Table 2. Performance and Running Time of the Greedy Algorithm and Approximate IP for
Different Guarantees (T � 13, |V | � 5, Lt � 2,Cv � 2, αt ∼U[1, 2],Bvt ∼U[1, 2])

Running time in seconds Performance ratio

Algorithm Average Maximum Average Minimum

Greedy algorithm 0.002 0.09 0.9849 0.9200
Approximate IP (ε � 0.50) 3.40 16.42 0.9937 0.9520
Approximate IP (ε � 0.25) 61.27 3,726.82 0.9979 0.9814
Approximate IP (ε � 0.10) 18,215.30 58,011.31 0.9997 0.9981
Approximate IP (ε � 0.05) 45,129.46 223,221.91 1 1

That said, in practice, IPs are frequently terminated
after a fixed time limit or when reaching a predefined
number of iterations, often yielding near-optimal solu-
tions. In the following, we investigate how the IP per-
forms when the termination time is set to one second,
five seconds, oneminute, fiveminutes, and 10minutes.
It is worth noting that premature termination of the
approximate IP removes our theoretical guarantee of
1 − ε on its worst-case performance. Regardless, pre-
liminary experimentation showed that ε � 0.05 yields
the best results for these time limits. The results over
50 random instances are presented in Table 3.
The results show that the greedy algorithm per-

forms well on average, within 2% of optimal; even
in the worst case, its optimality gap is 8%. Addition-
ally, these results show that the approximate IP yields
solutions with similar performance as the greedy algo-
rithm, when terminated after one minute. It is impor-
tant to note that the performance improves signifi-
cantly before the oneminutemark, after which it grows
slowly as the termination time is increased. Therefore,
we terminate the approximate IP with ε � 0.05 after
one minute in further experiments.
So far, the parameters Lt and Cv were constant

in all of our experiments. We next examine settings
where Lt and Cv are drawn from discrete uniform
distributions. Specifically, all Lt values are uniformly
distributed on {1, . . . , 5}, and all Cv are uniformly dis-
tributed on {1, . . . , 13}. Since T � 13 and |V | � 5, these
ranges allow for all values that Lt and Cv can possibly
take. In Table 4, we present the results over 200 random
instances.

Table 3. Performance of the Greedy Algorithm and
Approximate IP for Different Termination Times (T � 13,
|V | � 5, Lt � 2,Cv � 2, αt ∼U[1, 2],Bvt ∼U[1, 2], ε � 0.05)

Performance ratio

Algorithm Average Minimum

Greedy algorithm 0.9849 0.9200
Approximate IP (Limit: 1 s) 0.8264 0.7330
Approximate IP (Limit: 5 s) 0.9014 0.7876
Approximate IP (Limit: 1 m) 0.9813 0.9316
Approximate IP (Limit: 5 m) 0.9932 0.9712
Approximate IP (Limit: 10 m) 0.9979 0.9779

Table 4 demonstrates that the approximate IP, ter-
minated at one minute, outperforms the greedy algo-
rithmwhen Lt and Cv are randomly distributed, rather
than being constant. On average, the solution of the
approximate IP provides a performance guarantee
within 0.8% relative to optimal, and its worst-case per-
formance is within 6.4% of optimal. Note that the
greedy algorithm is faster and still performs well, with
an average performance within 2.9% of optimal. How-
ever, its worst-case performance is roughly within 10%
of optimal, which is greatly improved by the termi-
nated approximate IP.

Finally, the second part of Table 4 considers the case
where αt and Bvt are drawn from a discrete uniform
distribution on {1, 2}, in contrast to the first part, where
these parameters are drawn uniformly on [1, 2]. In this
case, the average and worst-case performance of the
greedy algorithm drop significantly, since any error by
the greedy algorithm (in comparison to the optimal
solution) leads to a larger loss in the objective func-
tion relative to the setting where the parameters are
drawn from a continuous uniform distribution. On the
other hand, the terminated approximate IP performs
very well, and in fact, computes an optimal solution
in all of the 200 instances. More generally, the approx-
imate IP appears to outperform the greedy algorithm
for settings where the boost parameters Bvt have differ-
ent magnitudes. This situationmay be relevant in prac-
tice, where often one or two promotion vehicles (e.g.,
flyers) yield a significantly larger boost in demand rel-
ative to other vehicles. An additional advantage of the

Table 4. Performance of the Greedy Algorithm and
Approximate IP on Fully Randomized Instances
(T � 13, |V | � 5, Lt ∼U{1, . . . , 5},Cv ∼U{1, . . . , 13}, ε � 0.05)

Performance ratio

Average Minimum

Algorithm with αt ,Bvt ∼U[1, 2]
Greedy algorithm 0.9717 0.9026
Approximate IP (Limit: 1 m) 0.9926 0.9365

Algorithm with αt ,Bvt ∼U{1, 2}
Greedy algorithm 0.9200 0.7407
Approximate IP (Limit: 1 m) 1 1
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Figure 2. (Color online) Average Performance Ratios of the Greedy Algorithm, Approximate IP Without Cross Terms, and
Approximate IP with Cross Terms Relative to the Optimal Objective
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approximate IP approach is the ability to easily incor-
porate various linear constraints into the formulation,
whereas the greedy algorithm is devised specifically
for the basic model.

6.2. Performance with Cross Terms
Next, we consider the setting with cross-term effects
where pairs of vehicles can cannibalize or comple-
ment each other. To analyze the impact of ignoring
cross terms, we compare the solutions obtained by
the greedy algorithm, the approximate IP that ignore
cross terms, and the one that incorporates them (see
Appendix B.4). To make a meaningful comparison, the
solutions of all three algorithms are evaluated with
respect to the optimal objective where the cross terms
are present.
Generally, the parameter values remain as before,

but we consider several settings for the newly intro-
duced cross terms Buvt . For simplicity, each setting is
associated with a different fixed cross-term value rang-
ing from 0.75 to 1.25 in increments of 0.05, and for
each setting, we test 200 instances. Figure 2 presents
the average performance ratios of the greedy algo-
rithm, the approximate IP without cross terms, and
the approximate IP with cross terms when we vary
the cross-term values Buvt . Here, the performance ratio
is defined as the objective value of a given method
divided by the optimal objective, obtained via exhaus-
tive enumeration that takes cross terms into account.
As expected, Figure 2 confirms that the approxi-

mate IP without cross terms nearly coincides with the
approximate IPwith cross termswhen Buvt is close to 1.
Small differences are incurred due to terminating these
algorithms early. Generally, we observe that the per-
formance of both algorithms without cross terms dete-
riorates as the cross terms become more significant.
Surprisingly, the average performance of these algo-
rithms declinesmore rapidly under cannibalizing cross
terms (Buvt ≤ 1), relative to the case of complementary
cross terms (Buvt ≥ 1). The former corresponds to sce-
narios where the effect of assigning a pair of vehicles

is smaller when compared to the individual boosts of
the promotion vehicles, whereas the latter corresponds
to a situation in which assigning both vehicles simul-
taneously yields a larger boost. This suggests that both
algorithms are rather robust to complementary cross
terms. In particular, the greedy algorithm that ignores
cross terms remains within 5% of the approximate IP
that takes into account cross terms, evenwhen the cross
terms far exceed 1. On the other hand, this analysis
highlights the importance of developing and employ-
ing algorithms that account for strong adverse cross
terms. These tests show that the relative performance
of both algorithms decreases rapidly when cross terms
become smaller than 0.9, where wemay lose more than
20% in profit.

Through experience and historical data, retailers
often have a good understanding of the interaction
effects between two vehicles and can use this infor-
mation to assess which model to use. For settings
with cannibalization effects (Buvt ≤ 1), one should
preferably use the method that takes cross terms into
account. Otherwise, the retailer can experience large
profit losses. For settings with complimentary effects
(Buvt ≥ 1), ignoring cross terms may be acceptable.

7. Case Study
In what follows, we study how our methodology per-
forms in practice based on an actual case study. Our
data set is described in Section 4 and consists of data
collected from 18 stores of a large supermarket client
of the Oracle Retail Global Business Unit. We begin
by presenting the estimation methods of the model
parameters. Then, we apply our algorithms to the
resulting model and discuss the potential impact for
the retailer.

7.1. Promotion Vehicle Boost Estimation
As shown in Section 4.2, the multiplicative model
yields a good predictive accuracy out-of-sample (with
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R2 between 0.68 and 0.94 for the three items we con-
sidered). Specifically, we focus our attention on the fol-
lowing log-linear demand model, similar to the one
described in (4):

log(ds , i
t )� β

s , i
0 + β1t + βi

2 log(ps , i
t )+ βi

3 log(ps , i
t−1)

+

21∑
v�1

γv xs , i
vt + εs , i

t . (6)

Here, βs , i
0 denotes the store-item intercept, β1 repre-

sents the trend coefficient, and εs , i
t are i.i.d. normally

distributed random variables for all observations. In
this model, the demand at time t depends on the
item’s current and past prices in the store (ps , i

t , p
s , i
t−1),

whose effects correspond to the parameters βi
2 and β

i
3,

as well as on the item’s different promotion vehicles
in the store (xs , i

vt ), corresponding to the parameters γv .
We are interested in the boost parameter of vehicle v
at time t given by Bv � eγv . As mentioned in Sec-
tion 4.2, we assume that the boost of vehicle v is time
independent—i.e., γvt � γv for all t—as our data set
is too sparse to accurately estimate a different γvt for
each t. Note that we observed very few instances in our
data set where more than one vehicle was used for the
same item at the same time. As a result, we are unable
to reliably estimate the cross effects between promo-
tion vehicles (this extension of our model is described
in Appendix B).
After concluding that the multiplicative model

yields a better fit to the data, we decided to reestimate
the parameters using the entire data set to identify
B1 � eγ1 , . . . ,B21 � eγ21 . In Table 5, we present the esti-
mates γ̂v and boost estimates B̂v � e γ̂v for seven out
of the 21 vehicles present in our data. Out of 21 vehi-
cles, only five vehicles are not significant at the 0.05
level, although three of them are significant at the 0.1
level. The vehicles that are not listed in Table 5 have
smaller boosts in general, with the lowest value being
1.0134 (corresponding to one of the two insignificant
vehicles). For vehicles that are statistically significant
or near significant, the smallest boost is 1.0722. This
confirms that the assumption Bv ≥ 1 is satisfied by all
estimates.

Table 5. Estimated Promotion Vehicle Parameters and
Respective p-Values

Promotion vehicle B̂v γ̂v p-value

(1) Mailing Coupon 1.2294 0.2065 3.50 · 10−3

(2) Flyer Front 1.3731 0.3171 <2 · 10−16

(3) Flyer Mid 1.8315 0.6051 <2 · 10−16

(4) Flyer End 1.7702 0.5711 <2 · 10−16

(5) Display 1.3843 0.3252 1.41 · 10−9

(6) Bonus Snack 1.5915 0.4647 1.46 · 10−9

(7) TV Commercial 1.3039 0.2654 2.48 · 10−9

According to the boost estimates, promoting the
product in a flyer (B̂3 and B̂4) is clearly themost impact-
ful promotion vehicle (depending on position), increas-
ing sales by 83% or 77% relative to assigning no promo-
tion vehicles and keeping all other factors unchanged.
Additionally, the 59% increase in sales when a bonus
snack is offered with soft drinks (B̂6) indicates that this
is an effective vehicle as well. The other vehicles have
smaller effects: between 22% and 38% relative increase
in sales. This information is likely to be useful to the
retailer as it sheds light on the impact of each vehicle
on the weekly demand for a particular product. Since
retailers have limitations on the number of vehicles that
can be used in practice, this information may be cru-
cial when vehicles have to be selected on a short-term
notice.

Finally, having estimated the boosts Bv , we are left
with estimating theparameters αt . The time-dependent
parameter αt resembles the profitmargin at time t mul-
tiplied by the demand term, which is affected by the
price at time t. Thus, for every store s and item i indi-
vidually, we compute the estimates α̂t as follows:

α̂t �(ps , i
t −cs , i

t ) ·exp{β̂s , i
0 + β̂1t+ β̂i

2 log(ps , i
t )+ β̂i

3 log(ps , i
t−1)},

where ps , i
t and cs , i

t are the unit price and unit cost of
item i in store s at time t.

7.2. Promotion Vehicle Optimization
To assess the impact of our methods, we optimize the
vehicle assignments for one representative item over
one year (i.e., T � 52 weeks). Prior to optimizing, we
formulate the promotion vehicle scheduling problem
by plugging the item’s parameter estimates α̂t and B̂v
into the objective function. Additionally, the parame-
ters Lt and Cv are set to their implemented values in the
data set. In addition to this initial comparison with the
implemented Lt and Cv , we will perform a sensitivity
analysis on Lt and Cv to infer the variation in prof-
its when additional vehicle assignments are allowed.
Note that, in our case study, business rules of the third
type (i.e., the requirement that a particular promotion
vehicle has to be used at a specific time period) are
not present. However, as wementioned before, one can
easily incorporate such rules via basic modifications.

Notably, as we optimize vehicle assignments over 52
weeks, it is impossible to compute the optimal solution
using brute force enumeration. The subset IP formula-
tion mentioned in Section 4.3 cannot be solved either,
as it involves 2|V | · T � 221 · 52 binary variables. Inter-
estingly, we observed that the greedy algorithm and
the approximate IP identified precisely the same vehi-
cle assignments in all settings tested. In Figure 3, we
present the resulting profit increases our model attains
over the current practice in six different stores.2 In each
of these settings, the three vertical bars correspond
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Figure 3. (Color online) Minimum, Average, and Maximum
Percentage Profit Increase for Different Settings
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to the minimum, average, and maximum percentage
increase in profits over the six stores.
First, in the leftmost column, we consider optimizing

the setting where the implemented Lt and Cv are used.
This setting shows the impact that our optimization
model can have on current practice. In particular, the
average increase in profits over the six stores is slightly
larger than 5%, which is a considerable increase in the
grocery industry where profit margins are small. Over
all six stores, the impact ranges from 2% to 9%. Conse-
quently, even in the store with the least impact, using
ourmodel to optimize the promotion vehicles schedule
yields a significant profit improvement of at least 2%.
Note that this projected improvement assumes that
there are no cross terms in the demand model. As
mentioned earlier, our data set includes relatively few
instances where the same pair of vehicles was used for
the same item at the same time. As a result, there is no
reliable way to estimate the cross terms by using this
data set. Nevertheless, it is worth mentioning that the
tests conducted in Section 6.2 suggest that the approx-
imate IP provides results that seem to be robust to the
presence of cross terms (assuming their magnitude is
not very far from 1, which seems to be a reasonable
assumption).
We next investigate the effect an increase in any of

the Cv or Lt parameters can have on the profit relative
to current practice. These what-if scenarios allow cate-
gory managers to examine how changing the require-
ments affects future decisions. Since our algorithms
run very quickly, one can efficiently test many such sce-
narios and gain a better understanding of the impact
that varying some of the business rules can have.
The second to fifth settings in Figure 3 demonstrate

the effect of, respectively, increasing the capacity of

Flyer Mid (C1), Display (C2), Bonus Snack (C3), and TV
Commercial (C4) by one unit over the entire year. To
perform a fair comparison, we maintain the capacity
Lt over this planning horizon as before. The figure
illustrates that an increase in vehicle capacity leads to
relatively small additional profits when compared to
current capacities, which is to be expected when only
one additional unit is allowed over an entire year. Nev-
ertheless, this analysis can be very useful in deciding
which vehicle capacity to increase. In our case, increas-
ing the maximal number of allowed flyer promotions
C1 is the most profitable strategy.
The rightmost setting in Figure 3 shows the impact

of increasing the capacity Lt by one unit for all time
periods. To perform a fair comparison, we maintain
all vehicle capacities (C1 , . . . ,C21) as before, so that the
total number of vehicles available over the entire year
is the same in both scenarios. This alteration leads
to a dramatic profit improvement relative to current
practice. On average, increasing Lt by one unit in all
time periods changes a 5% average profit gain into
an approximately 25% profit increase relative to cur-
rent practice. In particular, increasing time capacities
allows the optimization model to assign several vehi-
cles simultaneously and, consequently, to take advan-
tage of the multiplicative effect in demand.

8. Concluding Remarks
In this paper, we introduce and study the problem
of scheduling promotion vehicles, faced by supermar-
ket category managers who wish to decide on how to
spread multiple promotion vehicles over a finite plan-
ning horizon, so as to maximize profits. In this setting,
our problem formulation incorporates important busi-
ness rules from practice. Motivated by real data, we
focus on a class of demand models in which promo-
tion vehicles have a multiplicative effect on demand.
We then show that the resulting optimization prob-
lem is NP-hard and, furthermore, cannot be efficiently
approximated within some absolute constant. This
intractability result leads us to present two algorith-
mic approaches: an efficient greedy algorithm with an
approximation ratio of ∆ + 1, where ∆ stands for the
maximum number of vehicles that can be assigned
at any period, and a polynomial-size integer program
that yields a 1 − ε approximation. Finally, we com-
pare both approaches computationally in terms of per-
formance and running time, along with a case study
using data from an Oracle client. Under our model
assumptions and for a particular item considered in
our case study, these tests indicate that this optimiza-
tion model can lead to a profit increase of 2% to 9%
over current practice. In addition, the models and algo-
rithms developed in this paper can be used to draw
practical insights on the effects of promotion vehicles
on demand and profits. Given the scalability of our
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approach, the retailer can use thesemethods to test var-
ious strategies, and to select the best promotion sched-
ule for the upcoming selling season.

Open complexity question. As previously mentioned,
we proposed two approximation algorithms for the
most general formulation of the promotion vehicle
scheduling problem. In addition, we developed a
PTAS for the special case of uniform vehicle boosts
and uniform base profits of time periods (see Online
Appendix D)—i.e., Bvt � B for any vehicle v and time
period t, and in addition, α1 � · · ·�αT . Consequently, an
interesting open question for future research iswhether
improved approximation guarantees (possibly a PTAS)
can be obtained for a broader class of instances. For
example, one can consider the case where all time peri-
ods have uniform base profits (α1 � · · ·� αT), with time-
independent vehicle boosts (Bvt � Bv).

Handling multiple products. The fundamental prob-
lem considered in this paper focuses on efficiently
scheduling promotion vehicles for a single product.
However, onemay be interested in extending the analy-
sis tomultiple products. Interestingly, our approximate
integer programming approach (see Section 5.3 and
Appendix B.4) is flexible enough to be leveraged into
the multiproduct setting. Here, different products are
related throughadditional capacity constraints, placing
an upper bound on the number of products to which
any vehicle can be assigned at any time period (e.g., “at
most 4 products fit into a flyer advertisement at time
period 10”). To capture this setting, we simply augment
the original decision variables with a product index, so
that x i

vt now indicates whether vehicle v is assigned to
product i at time period t. With these new variables,
it remains to duplicate our current IP formulation over
all products, and incorporate constraints of the form∑

i x i
vt ≤ Lvt to enforce the additional (cross-item) capac-

ity constraints.Consequently,we can further extendour
approximate IP results to this general setting.
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Appendix A. Additional Proofs from Section 5
A.1. Proof of Lemma 2
To better understand our construction, we advise the reader
to consult Figure A.1, in which a depth-2 rooted tree T �

(N,E) is drawn. Here, the root r has∆ children, each of which
has ∆ − 1 children of its own. With respect to this tree, we
define an instance of the multiplicative model as follows:

• The set of vehicles is E, while the set of time periods
is N . That is, the edges and vertices of T serve as vehicles and
time periods, respectively.

Figure A.1. A Graph-Based Illustration of the Tight Example

1 2 �

� − 1 � − 1 � − 121 1 2 1 2

• The base profit of the root r is αr �1+1/M, where M ≥ ∆
is a parameter whose precise meaning will be explained
shortly. In addition, the base profit of any other vertex v is
αv � 1. All vertices, including the root, have capacity ∆.

• Each edge e � (u , v) has a boost of M when assigned to
any of its endpoints, u and v—that is, Be , u � Be , v � M. On
the other hand, this edge has a boost of 1 when assigned to
any other vertex. All edges have unit capacities, meaning that
each edge can be assigned only once.

Let us first examine how the greedy algorithm operates.
In step s � 1, we assign to the root r all ∆ edges adjacent
to it, obtaining a profit of (1 + 1/M) · M∆. From this point
on, these edges are no longer available, as their remaining
capacity becomes zero. Therefore, in steps s � 2, . . . ,∆+1, we
assign to each child of the root r all ∆− 1 edges underneath
it, with a combined profit of ∆ ·M∆−1. From that point on, all
edges have zero capacity, meaning that each of the ∆(∆ − 1)
leaves is not assigned any edge,making their combined profit
∆(∆− 1). To summarize, the greedy algorithm ends up with
a total profit of

Greedy
∆
(M)�

(
1+ 1

M

)
·M∆

+∆ ·M∆−1
+∆(∆− 1).

However, one feasible solution is that of assigning, to each
child of the root r, all ∆ edges adjacent to it, showing
that OPT∆(M) ≥ ∆ ·M∆. Consequently, the asymptotic ratio
between the profit obtained by the greedy algorithm and the
optimal profit, as the parameter M tends to infinity, is

lim
M→∞

Greedy
∆
(M)

OPT∆(M)

≤ lim
M→∞

(1+ 1/M) ·M∆ +∆ ·M∆−1 +∆(∆− 1)
∆ ·M∆

�
1
∆
.

A.2. Proof of Lemma 3
We say that period t is x∗-bad when ∏

v∈V B
x∗vt
vt � 1, meaning

that this period is either not assigned any vehicle or assigned
only vehicles with Bvt � 1. In the opposite case, period t is
called x∗-good, and we clearly have ∏

v∈V B
x∗vt
vt ∈ [B+

min ,B
∆
max].

The proof proceeds by considering two cases, depending on
whether period t is x∗-bad or x∗-good.
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Case 1: t is x∗-bad. Here, since 0 ∈D, we have by definition

exp
{⌊∑

v∈V
ln(Bvt) · x∗vt

⌋
D

}
≥ 1�

∏
v∈V

B
x∗vt
vt ,

and the claim follows.
Case 2: t is x∗-good. Based on the construction ofD, we have

exp
{⌊∑

v∈V
ln(Bvt) · x∗vt

⌋
D

}
≥ exp

{(
1+ 1

M

)−1

·
∑
v∈V

ln(Bvt) · x∗vt

}
≥ exp

{(
1− 1

M

)
·
∑
v∈V

ln(Bvt) · x∗vt

}
� exp

{(
1− ε

∆ · ln(Bmax)

)
·
∑
v∈V

ln(Bvt) · x∗vt

}
≥ e−ε ·

∏
v∈V

B
x∗vt
vt

≥ (1− ε) ·
∏
v∈V

B
x∗vt
vt ,

where the equality above holds since M � (∆/ε) · ln(Bmax),
and the subsequent inequality is obtained by observing that∑

v∈V ln(Bvt) · x∗vt ≤ ∆ · ln(Bmax).

Appendix B. Extension to Cross Terms
B.1. Multiplicative Model with Cross Terms
Very often, using two vehicles simultaneously may induce
an additional impact on demand, called a cross effect. For
example, by broadcasting a TV commercial (vehicle 1), one
can obtain the relative increase of B1 � 1.15 in demand, and
by distributing in-store flyers (vehicle 2), demand will be
boosted by B2 � 1.07. However, if these two vehicles are
scheduled at the same time, they may cannibalize or com-
plement each other, since some customers will be affected by
both promotion vehicles. To capture this phenomenon, we
introduce cross-term effects for each pair of vehicles u < v
and for each time period t, denoted by the parameters Buvt .
Note that if Buvt < 1, vehicles u and v cannibalize each other
(i.e., using them simultaneously has a lower effect than the
product of using them separately), and if Buvt > 1, vehicles
u and v complement each other (i.e., using them simulta-
neously has a greater effect than the product of using them
separately). Note that, to estimate these cross-effect param-
eters, one needs enough historical data on occurrences of
having the two vehicles simultaneously. This extension of our
problem can be very important in some practical settings as
these cross-term effects may significantly change the optimal
vehicle scheduling policy.

In this extension of the basic model, the promotion vehicle
scheduling problem becomes

(PCT) max
T∑

t�1
αt

∏
v∈V

Bxvt
vt

∏
u<v

Bxut xvt
uvt

(C̃1)
T∑

t�1
xvt ≤ Cv ∀ v ∈V,

(C̃2)
∑
v∈V

xvt ≤ Lt ∀ t ∈ [T],

(C̃3) xvt ∈ {0, 1} ∀ v ∈V, t ∈ [T].

As we will see shortly, this variant becomes provably harder
to approximate in comparison to the basic model (P), while
still allowing us to extend the main results of Section 5.

B.2. Inapproximability Results
In what follows, we prove that by incorporating cross terms
into the objective function, one makes the multiplicative
model significantly harder to deal with. To better understand
the inherent difficulty in handling cross terms, it is worth
mentioning that, for establishing the APX-hardness results
in Section 5.1, our reduction mapped instances of Max-IS∆
into ones of the basic multiplicative model with an arbitrary
number of time periods. In contrast, we show that in the pres-
ence of cross terms, stronger inapproximability bounds can
be obtained, even for a single time period.

For this purpose, we describe a simple gap-preserving
reduction from the maximum independent set problem in
general graphs (in contrast to regular graphs, as in Sec-
tion 5.1). In this context, it is NP-hard to distinguish be-
tween graphs containing an independent set of cardinality
Ω(|N |1−ε) and graphs where the size of any independent set
is O(|N |ε), for any fixed ε > 0 (Håstad 1996). Here, N stands
for the set of vertices in the underlying graph.

Theorem 4. Even for a single time period, it is NP-hard to ap-
proximate the multiplicative model with cross terms within factor
O(BO(|V |1−ε )

max ), for any fixed ε > 0, where Bmax is the maximum boost
of any vehicle.

Proof. Given an instance G � (N,E) of the maximum inde-
pendent set problem, consisting of a general undirected
graph on n vertices, we create a corresponding instance of
the multiplicative model with cross terms as follows:

• The set of vehicles is N , where each vehicle v has a unit
capacity (i.e., Cv � 1).

• There is a single time period, with a base profit of α1 � 1
and a capacity of L1 � n.

• Each vehicle v ∈ N has a boost of Bv , 1 � B > 1. However,
we fix the cross term Bu , v , 1 of each pair of vehicles u , v to be

Bu , v , 1 �

{
1 if (u , v) < E,
1/B2n if (u , v) ∈ E.

That is, this term is neutral when u and v are not joined by an
edge in G. Otherwise, when u and v are adjacent, this term
is sufficiently small so that the entire profit is cannibalized.

In otherwords, we have just created the following instance:

(PCT) max
∏
v∈N

Bxv , 1 ·
∏
(u , v)∈E

B−2n·xu , 1xv , 1

(C̃1) xv , 1 ≤ 1 ∀ v ∈ N,

(C̃2)
∑
v∈N

xv , 1 ≤ n ,

(C̃3) xv , 1 ∈ {0, 1} ∀ v ∈ N.

We proceed by showing that, letting U∗ be a maximum-
cardinality independent set in G, our reduction guaran-
tees that

OPT(PCT)�
{
Ω(BΩ(n1−ε )) when |U∗ | �Ω(n1−ε),
O(BO(nε )) when |U∗ | � O(nε).
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Indeed, when |U∗ | ≥ µ ·n1−ε for some constant µ > 0, consider
the solution obtained by setting xv , 1 � 1 if and only if v ∈U∗.
The resulting objective value is precisely∏

v∈N
Bxv , 1 ·

∏
(u , v)∈E

B−2n·xu , 1xv , 1 � B |U
∗ | ≥ Bµ·n1−ε

,

where the first equality holds since xu , 1xv , 1 � 0 for every
(u , v) ∈ E, or otherwise, two vertices in U∗ must be connected
by an edge, meaning that U∗ cannot be an independent set.

On the other hand, suppose that |U∗ | ≤ µ · nε for some
constant µ > 0. Here, any solution where at least |U∗ | + 1
of the variables {xv , 1}v∈N take a value of 1 necessarily has
xu , 1xv , 1 � 1 for some (u , v) ∈ E, or otherwise, U∗ cannot be a
maximum-cardinality independent set. However, when that
happens, OPT(PCT) ≤ Bn ·B−2n �B−n . In the opposite scenario,
at most |U∗ | of the variables take a value of 1, meaning that
the objective value can be upper bounded by∏

v∈N
Bxv , 1 ·

∏
(u , v)∈E

B−2n·xu , 1xv , 1 ≤ B |U
∗ | ≤ Bµ·nε . �

B.3. Applicability of the Greedy Algorithm
A careful inspection of the greedy algorithm proposed in
Section 5.2 reveals that our analysis holds in a much broader
setting. In fact, the only place we used the explicit product-
form contribution of each period t to the objective function,
αt

∏
v∈V Bxvt

vt , is in computing the best subset of vehicles to
pick so that the latter expression is maximized. However, this
analysis works even when each period t has its own objective
function Ft : 2V → �+, specifying an arbitrary nonnegative
contribution for each subset of vehicles assigned to time t. In
particular, the latter function could incorporate cross terms,
taking the form

Ft(U)� αt

∏
v∈U

Bvt

∏
u<v∈U

Buvt .

For this reason, themultiplicativemodel with cross terms can
also be approximated within factor ∆+ 1, where ∆�maxt Lt ,
as long as we can efficiently optimize the function Ft( · ). One
particularly interesting case where this is indeed possible is
when ∆� O(1), where this function can be optimized by enu-
merating all |V |Lt ≤ |V |∆ subsets of vehicles with cardinality
at most Lt .

B.4. Approximate IP with Cross Terms
This section is dedicated to proving that, even when cross-
terms are incorporated into the objective function, the mul-
tiplicative model can still be formulated as an approximate
integer program of polynomial size.

Theorem 5. Given an accuracy parameter ε > 0, we can efficiently
construct an integer program (IPCT, ε) that satisfies the following
properties:

1. The combined number of variables and constraints in (IPCT, ε)
is polynomial in the input size of (PCT) and in 1/ε.

2. (IPCT, ε) provides a (1 − ε)-approximation to (PCT). That is,
OPT(IPCT, ε) ≥ (1− ε) ·OPT(PCT), and moreover, any solution to
(IPCT, ε) can be efficiently translated to (PCT) without any loss in
optimality.

To avoid redundancies, since the basics of our approach
are thoroughly discussed in Section 5.3, we focus on high-
lighting the main obstacles in handling cross terms and
explain how these are resolved.

Ingredient 1: The integer program. Let D ⊆ �+ be a finite
discretization set, as defined in ingredient 2 below, consisting
of nonnegative real numbers, with 0 ∈ D. Based on this set,
our integer program (IPCT, ε) is defined as follows:

(IPCT, ε) max
T∑

t�1
αt

∑
r∈D
(e r · ytr)

(C̃1)
T∑

t�1
xvt ≤ Cv ∀ v ∈V,

(C̃2)
∑
v∈V

xvt ≤ Lt ∀ t ∈ [T],

(C̃3)
∑
r∈D

ytr � 1 ∀ t ∈ [T],

(C̃4) ytr ≤
1
r

(∑
v∈V

ln(Bvt) · xvt +
∑
u<v

ln(Buvt) · zuvt

)
∀ t ∈ [T], r ∈D\{0},

(C̃5) zuvt ≤ xut , zuvt ≤ xvt , zuvt ≥ xut + xvt − 1, zuvt ≥ 0
∀ u , v ∈V, u < v , t ∈ [T],

(C̃6) xvt , ytr ∈ {0, 1} ∀ u ∈V, t ∈ [T], r ∈D.
As in Section 5.3, the binary variable ytr indicates whether
we are using e r to slightly underestimate the boost∏

v∈V Bxvt
vt

∏
u<v Bxut xvt

uvt at time t. In addition, zuvt plays the
role of xut xvt , to linearize constraint (C̃4). It is easy to verify
that, for any binary assignment to the x-variables, constraint
(C̃5) guarantees that zuvt � xut xvt , even without an integrality
requirement on zuvt .
Ingredient 2: Defining the set D. In what follows, we use
Bmax > 1 to denote the maximum absolute value of any of the
individual boosts Bvt and cross terms Buvt , over all periods.
Using ideas similar to those of Section 5.3, we begin by initial-
izing D � {0}. This set is then augmented by all breakpoints
that are created when the interval [ε/2,∆2 · ln(Bmax)] ⊆ (0,∞)
is geometrically partitioned by powers of 1 + 1/M, where
M � (∆2/ε) · ln(Bmax). With this definition,

D�

{
0, ε2 ,

(
1+ 1

M

)
· ε2 ,

(
1+ 1

M

)2

· ε2 , . . .
}
.

Proof of Theorem 5, item 1. To show that the size of (IPCT, ε)
is polynomial in the input size of (PCT) and in 1/ε, it suffices
to show that the discretization set D satisfies this property.
For this purpose, by definition of D, we have

|D| � O
(
log1+1/M

∆ · ln(Bmax)
ε

)
� O

(
M ·

(
log∆+ log log(Bmax)+ log 1

ε

))
� O

(
∆2

ε
· ln(Bmax) ·

(
log∆+ log log(Bmax)+ log 1

ε

))
. �

Proof of Theorem 5, item 2. To prove thatOPT(IPCT,ε)≥(1−ε)·
OPT(PCT), letting x∗ be a fixed optimal solution to (PCT), we
argue that there are vectors y � y(x∗) and z � z(x∗) such that
(x∗ , y , z) is a feasible solution to (IPCT, ε) with an objective
value of at least (1− ε) ·OPT(PCT).

To this end, for every time period t, let

ytr �


1 if r �

⌊∑
v∈V

ln(Bvt) · x∗vt +
∑
u<v

ln(Buvt) · x∗ut x
∗
vt

⌋
D

,

0 otherwise,
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and for every pair of vehicles u < v, let zuvt � x∗ut x
∗
vt . Note

that, in the optimal solution x∗, we must have the relation∏
v∈V Bxvt

vt
∏

u<v Bxut xvt
uvt ≥ 1 for any time period t, and conse-

quently, b∑v∈V ln(Bvt) · x∗vt +
∑

u<v ln(Buvt) · x∗ut x
∗
vtcD is indeed

well defined above, as 0 ∈D. It is easy to verify that (x∗ , y , z) is
a feasible solution to (IPCT, ε): the constraints (C̃1) and (C̃2) are
clearly satisfied, as they also appear in (PCT); constraint (C̃4) is
guaranteed to be satisfied by thewaywe defined y; constraint
(C̃3) is taken care of by the fact that 0 ∈D; and constraint (C̃5)
follows from the definition of z. Furthermore, the objective
value of (x∗ , y , z)with respect to (IPCT, ε) is precisely

T∑
t�1
αt

∑
r∈D
(e r · ytr)

�

T∑
t�1
αt · exp

{⌊∑
v∈V

ln(Bvt) · x∗vt +
∑
u<v

ln(Buvt) · x∗ut x
∗
vt

⌋
D

}
.

To derive a lower bound on the latter term, we prove in
Appendix B.5 the following lemma.

Lemma 4. For every time period t,

exp
{⌊∑

v∈V
ln(Bvt) · x∗vt +

∑
u<v

ln(Buvt) · x∗ut x
∗
vt

⌋
D

}
≥ (1− ε) ·

∏
v∈V

B
x∗vt
vt

∏
u<v

B
x∗ut x∗vt
uvt .

As a result, we have just shown that

OPT(IPCT, ε)

≥
T∑

t�1
αt exp

{⌊∑
v∈V

ln(Bvt) · x∗vt +
∑
u<v

ln(Buvt) · x∗ut x
∗
vt

⌋
D

}
≥ (1− ε) ·

T∑
t�1
αt

∏
v∈V

B
x∗vt
vt

∏
u<v

B
x∗ut x∗vt
uvt

� (1− ε) ·OPT(PCT).

To conclude the proof of item 2, it remains to show that any
feasible solution (x , y , z) to (IPCT, ε) can be efficiently trans-
lated to (PCT) without any loss in optimality. Clearly, x must
be a feasible solution to (PCT), as the feasibility set of this
problem is contained in that of (IPCT, ε). In addition, the objec-
tive value of x with respect to (PCT) is

T∑
t�1
αt

∏
v∈V

Bxvt
vt

∏
u<v

Bxut xvt
uvt

�

T∑
t�1
αt · exp

{∑
v∈V

ln(Bvt) · xvt +
∑
u<v

ln(Buvt) · xut xvt

}
≥

T∑
t�1
αt

∑
r∈D
(e r · ytr),

where the last inequality follows from constraints (C̃3)
and (C̃4). �

B.5. Proof of Lemma 4
We say that period t is x∗-bad when ∏

v∈V B
x∗vt
vt

∏
u<v B

x∗ut x∗vt
uvt

≤ eε/2. In the opposite case, period t is called x∗-good, and
we clearly have∏

v∈V B
x∗vt
vt

∏
u<v B

x∗ut x∗vt
uvt ∈ [eε/2 ,B∆2

max]. The proof
proceeds by considering two cases, depending on whether
period t is x∗-bad or x∗-good.

Case 1: t is x∗-bad. Here, we have by definition∏
v∈V

B
x∗vt
vt

∏
u<v

B
x∗ut x∗vt
uvt

≤ eε/2

≤ 1+ ε

≤ 1
1− ε · exp

{⌊∑
v∈V

ln(Bvt) · x∗vt +
∑
u<v

ln(Buvt) · x∗ut x
∗
vt

⌋
D

}
,

where the second inequality holds since eε/2 ≤ 1 + ε when
ε ∈ [0, 1], and the third inequality holds since the expression
within the b·cD operator cannot be negative (otherwise, x∗ is
not optimal) and since 0 ∈ D. The desired claim follows by
rearranging the above inequality.
Case 2: t is x∗-good. Based on the construction ofD, we have

exp
{⌊∑

v∈V
ln(Bvt) · x∗vt +

∑
u<v

ln(Buvt) · x∗ut x
∗
vt

⌋
D

}
≥ exp

{(
1+ 1

M

)−1

·
(∑

v∈V
ln(Bvt) · x∗vt +

∑
u<v

ln(Buvt) · x∗ut x
∗
vt

)}
≥ exp

{(
1− 1

M

)
·
(∑

v∈V
ln(Bvt) · x∗vt +

∑
u<v

ln(Buvt) · x∗ut x
∗
vt

)}
� exp

{(
1− ε

∆2 · ln(Bmax)

)
·
(∑

v∈V
ln(Bvt) · x∗vt +

∑
u<v

ln(Buvt) · x∗ut x
∗
vt

)}
≥ e−ε ·

∏
v∈V

B
x∗vt
vt

∏
u<v

B
x∗ut x∗vt
uvt

≥ (1− ε) ·
∏
v∈V

B
x∗vt
vt

∏
u<v

B
x∗ut x∗vt
uvt ,

where the equality above holds since M � (∆2/ε) · ln(Bmax),
and the subsequent inequality is obtained by observing that∑

v∈V ln(Bvt) · x∗vt +
∑

u<v ln(Buvt) · x∗ut x
∗
vt ≤ ∆2 · ln(Bmax).

Endnotes
1We tried both AIC and BIC sequentially to obtain a robust model in
terms of which independent variables are significant. We observed
that both criteria yield similar outcomes, suggesting that the set
of independent variables in our estimated model is robust. Note
that both criteria removed two promotion vehicles from the additive
demand model.
2Following the suggestion of our industry collaborators, we decided
to focus on the six most relevant stores for this project. These stores
have a good data collection process and accurately recorded the his-
torical use of promotion vehicles. In addition, our case study focuses
on a specific item that does not sell the same way across all 18 stores.
We are therefore constrained to focus on the stores that have a large
volume of sales and a significant revenue for the particular item of
interest.
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